PIERCING FAMILIES OF CONVEX SETS WITH d-INTERSECTION PROPERTY IN \mathbb{R}^{d}

R.N. KARASEV

Abstract

In this paper we consider finite families of convex sets in \mathbb{R}^{d} such that every d or less sets of the family have a common point. For some families of this type we give upper bounds on the size of a finite set intersecting all sets of the family.

1. Introduction

We consider finite families of convex sets in \mathbb{R}^{d} such that every d or less sets have a common point. We are interested in the minimal size of a finite set in \mathbb{R}^{d} having common point with every member of the family.

We begin with several definitions:
Definition. t-transversal for a family of sets \mathcal{F} is a set T of cardinality t such that $\forall S \in \mathcal{F} S \cap T \neq \emptyset$.

Definition. Minimal t such that a t-transversal of the family \mathcal{F} exists is called transversal number or piercing number of \mathcal{F}, and denoted $\tau(\mathcal{F})$.

Definition. A family of sets \mathcal{F} has property Π_{k} if for any nonempty $\mathcal{G} \subseteq \mathcal{F}$ such that $|\mathcal{G}| \leq k$ the intersection $\bigcap \mathcal{G}$ is not empty.

Helly's theorem states that Π_{d+1} implies $\tau(\mathcal{F})=1$ for any finite family \mathcal{F} of convex sets in \mathbb{R}^{d}.

We can see that the case of Π_{d} property in \mathbb{R}^{d} is the closest to the case of Helly's theorem, and we may expect reasonable upper bounds for $\tau(\mathcal{F})$ here. Of course, the example of hyperplanes in general position shows that Π_{d} property alone cannot guarantee any bound on $\tau(\mathcal{F})$. Hence we have to impose some limitations on family \mathcal{F} to obtain some bounds for the piercing number. In this paper we mostly consider families of homothets or translates of some compact convex set.

[^0]From here on we consider finite families of closed convex sets in \mathbb{R}^{d} $(d \geq 2)$ having property Π_{d}. We show that for for certain families Π_{d} property implies $\tau(\mathcal{F}) \leq d+1$. We also give a linear in d upper bound for the piercing number of families of euclidean balls in \mathbb{R}^{d} with Π_{d} property.

The simplest result of this type (Grünbaum's conjecture) was proved by the author in [4]:

Theorem 1. Let \mathcal{F} be a family of translates of a two-dimensional convex compact set. If \mathcal{F} has property Π_{2} then $\tau(\mathcal{F}) \leq 3$.

In this paper we use the same main idea as in [4]. But the way of reasoning was quite cleared up, which lead to several more results.

Theorem 2. Let \mathcal{F} be a family of homothets of a centrally symmetric convex compact set in \mathbb{R}^{2} and let any two sets in \mathcal{F} be no more than two times different in size. If \mathcal{F} has property Π_{2} then $\tau(\mathcal{F}) \leq 3$.

In [3] Grünbaum proved the upper bound $\tau(\mathcal{F}) \leq 7$ without any size constraint. Theorem 2 gives less piercing number with size constraint. The bound $\tau(\mathcal{F}) \leq 3$ in this theorem is tight, it is well-known that it is tight even for families of equal unit disks.

Using the same technique we prove another result of this kind for euclidean balls in \mathbb{R}^{d} :

Theorem 3. Let \mathcal{F} be a family of Euclidean balls in \mathbb{R}^{d} with radii no more than d times different. If \mathcal{F} has property Π_{d} then $\tau(\mathcal{F}) \leq d+1$.

The existence of $(d+1)$-transversal for a family of equal balls with Π_{d} property is proved in [1].

Theorem 3 generalizes this result for families of balls with size constraint. The author is not sure that the bound $\tau(\mathcal{F}) \leq d+1$ in Theorem 3 is tight.

Using this result we can give an upper bound on the piercing number of a family of balls in \mathbb{R}^{d} with Π_{d} property without any size constraint:

Theorem 4. Let \mathcal{F} be a family of Euclidean balls in \mathbb{R}^{d}. If \mathcal{F} has property Π_{d} then $\tau(\mathcal{F}) \leq 3(d+1)$ when $d \geq 5$ and $\tau(\mathcal{F}) \leq 4(d+1)$ when $d \leq 4$.

It seems that the bound in this theorem can be improved, especially for small d. In case of $d=2$ Theorem 4 gives $\tau(\mathcal{F}) \leq 12$, while Danzer's result (see [1, 2]) gives $\tau(\mathcal{F}) \leq 4$.

For a family of positive homothets of a simplex in \mathbb{R}^{d} we have bound $d+1$ without size constraints:

Theorem 5. Let \mathcal{F} be a family of positive homothets of a simplex in \mathbb{R}^{d}. If \mathcal{F} has property Π_{d} then $\tau(\mathcal{F}) \leq d+1$.

The author does not know whether Theorem 5 gives tight upper bound on the piercing number for $d>2$. For $d=2$ the bound is tight even for families of equal triangles. In this case the piercing problem is equivalent to the following covering problem: if every two points of a closed set $S \subset \mathbb{R}^{2}$ can be covered by a translate of triangle T, then S can be covered by 3 translates of T. Taking $S=-T$ we can see that 3 translates are necessary. Here the set S is infinite, but by the standard compactness reasoning some its finite subset still needs 3 translates of T to be covered.

Theorem 3 can be generalized to the case when the sets in the family do not have to be homothets of each other. We need some definitions to formulate the result.

Definition. A convex compact set in \mathbb{R}^{d} is called R-upper convex if it is an intersection of balls of radius R.

Definition. A convex compact set in \mathbb{R}^{d} is called R-lower convex if it is a union of balls of radius R.

Theorem 6. Let \mathcal{F} be a family of convex compact sets in \mathbb{R}^{d}. Let every set in \mathcal{F} be R-lower convex and $d R$-upper convex for some constant $R>0$. If \mathcal{F} has property Π_{d} then $\tau(\mathcal{F}) \leq d+1$.

The following question remains open: whether the upper bound $\tau(\mathcal{F}) \leq d+1$ (or some other linear in d bound) is true for families of translates of a convex compact set.

2. Some consequences of Π_{d} Property

To prove theorems in this paper we explicitly construct a $(d+1)$ element set and prove that this is a transversal for \mathcal{F}.

This construction only uses Π_{d} property of some family \mathcal{F} of convex closed sets in \mathbb{R}^{d}, but it does not give a transversal of \mathcal{F} in the general case.

First we define a family of halfspaces that can test the non-existence of a common point of a family \mathcal{F} of compact convex sets.

Definition. Let $\left\{K_{1}, K_{2}, \ldots, K_{d+1}\right\} \subseteq \mathcal{F}$. A family of halfspaces

$$
\left\{H_{1}, H_{2}, \ldots, H_{d+1}\right\}
$$

where for any $i=1, \ldots, d+1 K_{i} \subseteq H_{i}$ is called test family of halfspaces for family \mathcal{F}.

Definition. If a test family of halfspaces for \mathcal{F} has an empty intersection we call it non-intersecting test family of halfspaces.

We need some lemmas:
Lemma 1. Let \mathcal{F} have Π_{d} property. Then for every non-intersecting test family of halfspaces $\left\{H_{1}, H_{2}, \ldots, H_{d+1}\right\}$ for \mathcal{F} the set

$$
S\left(H_{1}, H_{2}, \ldots, H_{d+1}\right)=\operatorname{cl}\left(\mathbb{R}^{d} \backslash \bigcup_{i=1}^{d+1} H_{i}\right)
$$

is a simplex.
Proof. The family $\mathcal{H}=\left\{H_{1}, H_{2}, \ldots, H_{d+1}\right\}$ has empty intersection while every its proper subfamily have a common point. Let for $i=$ $1, \ldots, d+1$

$$
x_{i} \in \bigcap_{j \neq i} H_{j} .
$$

If the points $\left\{x_{i}\right\}_{i=1}^{d+1}$ does not make a simplex then they lie in a d - 1-dimensional hyperplane and by the Radon's theorem the set of indices $[d+1]$ can be partitioned into I_{1} and I_{2} so that there exists

$$
x \in \operatorname{conv}\left\{x_{i}\right\}_{i \in I_{1}} \cap \operatorname{conv}\left\{x_{i}\right\}_{i \in I_{2}},
$$

but in this case $x \in \bigcap \mathcal{H}$.
Hence $\left\{x_{i}\right\}_{i=1}^{d+1}$ make a simplex S and halfspaces H_{i} contain its respective facets. If the family \mathcal{H} cover S then by Sperner's lemma $\bigcap \mathcal{H} \cap S \neq \emptyset$, which is not true. Thus we have a point

$$
x \in \operatorname{int} S \quad \forall i=1, \ldots, d+1 x \notin H_{i} .
$$

Consider some $y \in \mathbb{R}^{d} \backslash S$. If y is not contained in any halfspace of \mathcal{H} then the segment $[x, y]$ does not intersect any halfspace of \mathcal{H} (this is true because the complement to a halfspace is convex). Hence $z=[x, y] \cap \operatorname{bd} S$ is not contained in any of \mathcal{H}, This is a contradiction with the fact that bd S is covered by \mathcal{H}.

So we have $\mathbb{R}^{d} \backslash S \subseteq \bigcup \mathcal{H}$ and $S\left(H_{1}, H_{2}, \ldots, H_{d+1}\right)=\operatorname{cl}\left(\mathbb{R}^{d} \backslash \bigcup_{i=1}^{d+1} H_{i}\right)$ is a polytope with nonempty interior and $d+1$ facets, so it has to be a d-dimensional simplex.

Lemma 2. If a family \mathcal{F} with Π_{d} property does not have non-intersecting test family of halfspaces then $\bigcap \mathcal{F} \neq \emptyset$.

Proof. If $|\mathcal{F}| \leq d$ the statement is obvious.
Otherwise, by Helly's theorem we find $\mathcal{K}=\left\{K_{1}, K_{2}, \ldots, K_{d+1}\right\} \subseteq \mathcal{F}$ such that $\bigcap \mathcal{K}=\emptyset$.

Let for $i=1, \ldots, d+1 L_{i}$ denote the set of linear functions $l(x)$ such that $l(x) \leq 0$ for all $x \in K_{i}$. By the standard properties of convex duality, if $\bigcap \mathcal{K}=\emptyset$ then the constant function $l(x) \equiv 1 \in \operatorname{conv} \bigcup_{i=1}^{d+1} L_{i}$. Equivalently, there are non-negative numbers $\left\{a_{i}\right\}_{i=1}^{d+1}$ and functions $\left\{l_{i}\right\}_{i=1}^{d+1}\left(l_{i} \in L_{i} \forall i=1, \ldots, d+1\right)$ such that

$$
1=\sum_{i=1}^{d+1} a_{i} l_{i}(x)
$$

Denote $H_{i}=\left\{x: l_{i}(x) \leq 0\right\}$. These sets have no common point since in the common point the above equality cannot hold. For all $i=1, \ldots, d+1 K_{i} \subseteq H_{i}$ and each H_{i} is either a halfspace or coincides with the whole \mathbb{R}^{d}. If we substitute those H_{i} 's that are equal to \mathbb{R}^{d} by arbitrary halfspaces containing respective K_{i} 's, we obtain a nonintersecting test family of halfspaces.

Lemma 3. Let the family \mathcal{F} have Π_{d} property. Then either $\tau(\mathcal{F})=1$ or there exists such a non-intersecting test family of halfspaces $\left\{H_{1}, H_{2}, \ldots, H_{d+1}\right\}$ that the volume of $S\left(H_{1}, H_{2}, \ldots, H_{d+1}\right)$ is maximal over all non-intersecting test families of halfspaces.

Proof. If there is no non-intersecting test family of halfspaces then by Lemma $2 \tau(\mathcal{F})=1$.

In the other case it is sufficient to show that for every fixed subfamily

$$
\mathcal{K}=\left\{K_{1}, K_{2}, \ldots, K_{d+1}\right\} \subseteq \mathcal{F}
$$

with empty intersection the maximum of $\operatorname{vol} S\left(H_{1}, H_{2}, \ldots, H_{d+1}\right)$ over all non-intersecting test families $\mathcal{H}=\left\{H_{1}, H_{2}, \ldots, H_{d+1}\right\}$ corresponding to \mathcal{K} is reached. This is sufficient to prove the lemma since the number of subfamilies \mathcal{K} is finite.

Any d sets of family \mathcal{K} have nonempty intersection, so we find for all $i=1, \ldots, d+1$

$$
x_{i} \in \bigcap_{j \neq i} K_{i} .
$$

As in the proof of Lemma 1

$$
S\left(H_{1}, H_{2}, \ldots, H_{d+1}\right) \subseteq \operatorname{conv}\left\{x_{1}, x_{2}, \ldots, x_{d+1}\right\},
$$

hence $\operatorname{vol}\left(S\left(H_{1}, H_{2}, \ldots, H_{d+1}\right)\right)$ is bounded.
It is clear that if we take instead of H_{i} the unique inner support halfspace for K_{i} contained in H_{i} the volume of $S\left(H_{1}, H_{2}, \ldots, H_{d+1}\right)$ becomes larger. Every support halfspace of K_{i} is determined by its unit normal vector n_{i}, so the variety of the families of support halfspaces to the sets of \mathcal{K} has the topology of a cartesian product of $d+1$ unit spheres. We
consider the subset X of this space that corresponds to non-intersecting test families for \mathcal{K}. The vertices of $S\left(H_{1}, H_{2}, \ldots, H_{d+1}\right)$ and its volume are continuous functions on X.

Let $\sup _{X} \operatorname{vol}\left(S\left(H_{1}, H_{2}, \ldots, H_{d+1}\right)\right)=2 \varepsilon>0$. Then we can easily check that the variety of non-intersecting test families $\mathcal{H}=\left\{H_{1}, H_{2}, \ldots, H_{d+1}\right\}$ such that

$$
\operatorname{vol}\left(S\left(H_{1}, H_{2}, \ldots, H_{d+1}\right)\right) \geq \varepsilon
$$

is closed, hence the volume takes its maximum value 2ε at some point of X.

The above lemmas allow us to make a definition:
Definition. Let \mathcal{F} be a finite family of convex closed sets in \mathbb{R}^{d} with Π_{d} property and let $\bigcap \mathcal{F}=\emptyset$. Denote the simplex $S\left(H_{1}, H_{2}, \ldots, H_{d+1}\right)$ with maximal volume for some non-intersecting test family of halfspaces $\left\{H_{1}, H_{2}, \ldots, H_{d+1}\right\}$ by $S(\mathcal{F})$. Denote the convex hull of the mass centers of facets of $S(\mathcal{F})$ by $s(\mathcal{F})$.

The importance of these simplices is explained by the following lemma:
Lemma 4. Let \mathcal{F} be a finite family of convex closed sets in \mathbb{R}^{d} with Π_{d} property having no common point. In this case for any $S \in \mathcal{F}$ $S \cap s(\mathcal{F}) \neq \emptyset$.

To prove Lemma 4 we need another lemma:
Lemma 5. Let S be a simplex in \mathbb{R}^{d} with vertices $\left\{v_{1}, v_{2}, \ldots, v_{d+1}\right\}$, let S^{\prime} be a simplex with vertices $\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{d}^{\prime}, v_{d+1}\right\}$. Let points v_{i}^{\prime} $(i=1, \ldots, d)$ lie on the rays $v_{d+1} v_{i}$ respectively. If int S^{\prime} contains the mass center of $\left\{v_{1}, \ldots, v_{d}\right\}$ then $\operatorname{vol} S^{\prime}>\operatorname{vol} S$.

Proof. Take a coordinate frame with origin v_{d+1} and base

$$
\left\{v_{1}^{\prime}-v_{d+1}, v_{2}^{\prime}-v_{d+1}, \ldots, v_{d}^{\prime}-v_{d+1}\right\}
$$

let i-th coordinate of v_{i} be x_{i}. If int S^{\prime} contains the mass center of $\left\{v_{1}, \ldots, v_{d}\right\}$ then

$$
\sum_{i=1}^{d} x_{i}<d
$$

and by the mean inequality $\prod_{i=1}^{d} x_{i}<1$, which implies $\operatorname{vol} S^{\prime}>\operatorname{vol} S$.

Proof of Lemma 4. Consider the subfamily

$$
\mathcal{K}=\left\{K_{1}, K_{2}, \ldots, K_{d+1}\right\} \subseteq \mathcal{F},
$$

corresponding to the non-intersecting test family of halfspaces

$$
\mathcal{H}=\left\{H_{1}, H_{2}, \ldots, H_{d+1}\right\},
$$

where $S(\mathcal{F})=S\left(H_{1}, H_{2}, \ldots, H_{d+1}\right)$. Denote the respective vertices of $S(\mathcal{F})$ and $s(\mathcal{F})$ by $\left\{v_{1}, v_{2}, \ldots, v_{d+1}\right\}$ and $\left\{w_{1}, w_{2}, \ldots, w_{d+1}\right\}$.

The volume of $S(\mathcal{F})$ is maximal, so each K_{i} has to touch its respective facet of $S(\mathcal{F})$.

Assume the contrary: K_{i} does not intersect $s(\mathcal{F})$.
Let C_{i} be a cone with vertex w_{i} spanned by rays $w_{i} w_{j}(j \neq i) . K_{i}$ cannot intersect C_{i} because these sets are separated by bd H_{i} and could only have intersection in $w_{i} \in s(\mathcal{F})$.

Then there exists a halfspace $H_{i}^{\prime} \supseteq K_{i}$ such that $H_{i}^{\prime} \cap C_{i}=\emptyset$. The family of halfspaces $\left(\mathcal{H} \backslash\left\{H_{i}\right\}\right) \cup\left\{H_{i}^{\prime}\right\}$ is non-intersecting $\left(\bigcap_{j \neq i} H_{i} \subseteq C_{i}\right)$ and is a test family. By Lemma 5

$$
\operatorname{vol} S\left(H_{1}, \ldots, H_{i}^{\prime}, \ldots, H_{d+1}\right)>\operatorname{vol} S(\mathcal{F})
$$

and we have a contradiction.
Now take $K \in \mathcal{F} \backslash \mathcal{K}$. Assume that $K \cap s(\mathcal{F})=\emptyset$.
There exists a halfspace $H \supseteq K$ that does not intersect $s(\mathcal{F})$. $H \nsupseteq$ $S(\mathcal{F})$ and we find the farthest from H vertex of $S(\mathcal{F})$ and denote it v_{i}.

Then $\bigcap_{j \neq i} H_{j}$ is a cone spanned by the rays that has their origins at v_{i} and do not intersect H. Hence $H \cap \bigcap_{j \neq i} H_{j}=\emptyset$ and the family $\left(\mathcal{H} \backslash\left\{H_{i}\right\}\right) \cup\{H\}$ has no common point. Considering simplices $S((\mathcal{H} \backslash$ $\left.\left.\left\{H_{i}\right\}\right) \cup\{H\}\right)$ and $S(\mathcal{F})$ we again come to contradiction by Lemma 5 .

We need another lemma to prove Theorem 4
Lemma 6. Suppose we have a simplex S in $\mathbb{R}^{d}(d \geq 5)$, its outer halfspaces corresponding to facets being $\mathcal{H}=\left\{H_{1}, H_{2}, \ldots, H_{d+1}\right\}$. Let a ball B of radius R together with the family \mathcal{H} give a family with Π_{d} property. Then the radius r of the ball inscribed in S satisfies the inequality

$$
r \leq \frac{1}{\left\lfloor\frac{d+1}{2}\right\rfloor-1} R \leq 1 / 2 R
$$

Proof. Let the vertices of S be $\left\{v_{1}, v_{2}, \ldots, v_{d+1}\right\}$. Consider the orthogonal projection $p: \mathbb{R}^{d} \rightarrow V$ taking pairs $\left\{v_{1}, v_{2}\right\},\left\{v_{3}, v_{4}\right\}$, and so on to single points. If $d+1$ is odd let p take v_{d-1}, v_{d}, v_{d+1} into one point, otherwise, p takes pairs into single points. We have a simplex $S^{\prime}=p(S)$ with $d^{\prime}+1=\left\lfloor\frac{d+1}{2}\right\rfloor$ vertices, let its outer halfspaces of facets be $\mathcal{H}^{\prime}=\left\{H_{1}^{\prime}, H_{2}^{\prime}, \ldots, H_{d^{\prime}+1}^{\prime}\right\}$. We also have a ball $B^{\prime}=p(B)$.

In the barycentric coordinates $\left\{x_{1}, x_{2}, \ldots, x_{d+1}\right\}$ of S and $\left\{y_{1}, y_{2}, \ldots, y_{d^{\prime}+1}\right\}$ of S^{\prime} the map p is given by:

$$
\begin{gathered}
y_{1}=x_{1}+x_{2} \\
y_{2}=x_{2}+x_{3} \\
\cdots \\
y_{d^{\prime}+1}=x_{d}+x_{d+1} \quad \text { or } \quad y_{d^{\prime}+1}=x_{d-1}+x_{d}+x_{d+1} .
\end{gathered}
$$

It is easy to see that B^{\prime} has a common point with every family $\mathcal{H}^{\prime} \backslash\left\{H_{i}^{\prime}\right\}$. These common points form a simplex containing S^{\prime}, hence B^{\prime} contains S^{\prime}.

Then we make a homothety with center at the mass center of S^{\prime} and scale ratio $-\frac{1}{d^{\prime}}$. It takes B^{\prime} to the ball $B^{\prime \prime}$ of radius $\frac{1}{d^{\prime}} R$ that intersects all facets of S^{\prime}. So the radius of the inscribed ball of $S^{\prime \prime}$ cannot be larger than $\frac{1}{d^{\prime}} R$, since the inscribed ball is the ball of minimal radius intersecting all the facets of the simplex.

Hence the radius of the inscribed ball of S cannot be larger than $\frac{1}{d^{\prime}} R$ too.

3. Concave simplices of curvature radius R

We give some definitions:
Definition. Let a family $\left\{B_{1}, B_{2}, \ldots, B_{d+1}\right\}$ of euclidean balls of radius R and centers $\left\{o_{1}, o_{2}, \ldots, o_{d+1}\right\}$ in \mathbb{R}^{d} have the following property: every d balls have a common point while the whole family has no common point. In this case we call the set

$$
\mathrm{cl}\left(\operatorname{conv}\left\{o_{1}, o_{2}, \ldots, o_{d+1}\right\} \backslash \bigcup_{i=1}^{d+1} B_{i}\right)
$$

a concave simplex of curvature radius R.
In the plane we consider arbitrary norm $\|\cdot\|$ and give a non-euclidean version of the above definition:

Definition. Let a family $\left\{B_{1}, B_{2}, B_{3}\right\}$ of balls of radius R and centers $\left\{o_{1}, o_{2}, o_{3}\right\}$ w.r.t. norm $\|\cdot\|$ in the plane have the following property: every 2 balls intersect while the whole family has no common point. The set

$$
\operatorname{cl}\left(\operatorname{conv}\left\{o_{1}, o_{2}, o_{3}\right\} \backslash \bigcup_{i=1}^{3} B_{i}\right)
$$

is called a concave simplex of curvature radius R in norm $\|\cdot\|$.

By Sperner's lemma the simplices defined above are nonempty, otherwise the family should have a common point.

We could define a concave simplex for arbitrary norm in any dimension, but in general they do not have the properties we want because the bounded connected component of $\mathbb{R}^{d} \backslash \bigcup_{i=1}^{d+1} B_{i}$ does not have to lie in $\operatorname{conv}\left\{o_{1}, o_{2}, \ldots, o_{d+1}\right\}$ for $d>2$.

We prove several lemmas about concave simplices of curvature radius R. Unless specially noted, our reasoning is valid for both the cases of an arbitrary two-dimensional norm and the euclidean norm in \mathbb{R}^{d}.

Definition. Let T be a concave simplex in \mathbb{R}^{d}. A vertex of T is a point on its boundary that belongs to boundaries of exactly d balls that determine T.

Lemma 7. Let T be a concave simplex of curvature radius R. Then

1) int T does not intersect the boundary of $S=\operatorname{conv}\left\{o_{1}, o_{2}, \ldots, o_{d+1}\right\}$;
2) T is contained in the convex hull of its vertices;
3) the number of vertices of T is $d+1$.

Proof. The first statement can be deduced from the fact that each facet of S is contained in a union of balls of radius R with centers in the vertices of the facet.

Each extremal point of T has to be its vertex, hence T is contained in the convex hull of its vertices.

Each vertex of T corresponds to the intersection of d spheres of radius R. Centers of these spheres make a facet F of S. If the spheres have two intersection points then their intersection points lie on different sides of the hyperplane of F, so only one of the points can be a vertex of T. In the case of the plane, when the balls are not strictly convex, the intersection of the spheres can be a line segment. But in this case a vertex of T is necessarily in the end of the segment and one of the ends is on the other side of F.

Finally we have no more than $d+1$ vertices of T, their number cannot be less because int $T \neq \emptyset$.

Lemma 8. A concave simplex T of curvature radius R in two-dimensional case has diameter no more than R in the norm $\|\cdot\|$; in d-dimensional case it has diameter no more than $\frac{2}{\sqrt{d^{2}-1}} R<R$.

Proof. In two-dimensional case T lies in the triangle formed by midpoints of sides of triangle $o_{1} O_{2} O_{3}$, therefore its diameter does not exceed R.

In the case of euclidean balls consider the point o equidistant from $o_{1}, o_{2}, \ldots, o_{d+1}$. It is not contained in any of the balls $B_{o_{i}}(R)$ and is
contained in conv $\left\{o_{1}, o_{2}, \ldots, o_{d+1}\right\}$, hence, $o \in T$. The result of Danzer (see Theorem 6.8 in [1]) implies that $\left|o o_{i}\right| \leq \frac{d}{\sqrt{d^{2}-1}} R$.

The length of any tangent from o to the ball $B_{o_{i}}(R)$ does not exceed $\frac{1}{\sqrt{d^{2}-1}} R$ and any line segment from o to a point on $\operatorname{bd} B_{o_{i}}(R)$ that does not intersect int $B_{o_{i}}(R)$ has length no more than $\frac{1}{\sqrt{d^{2}-1}} R$.

Every vertex v of T lies on the radical axis of some d balls, this radical axis passes through o, thus all segments ov lie in T and do not intersect int $B_{o_{i}}(R)$. Hence all segments ov have length no more than $\frac{1}{\sqrt{d^{2}-1}} R$, which implies the statement of the lemma.

Lemma 9. A ball of radius $R^{\prime} \geq R$ intersects a concave simplex T of curvature radius R iff it contains some vertex of T.

Proof. Consider all the balls of radius R^{\prime} that intersect T. Denote the set of their centers by X.

Consider all the balls of radius R^{\prime} that contain some vertex of T. Denote the set of their centers by Y. It is clear to see that

$$
Y=\bigcup_{i=1}^{d+1} B_{o_{i}}\left(R^{\prime}\right)
$$

By Lemma $8 \operatorname{diam} T \leq R$ and each ball $B_{o_{i}}\left(R^{\prime}\right)$ contains T. Thus Y is star-shaped with any center in T. Similarly, X is star-shaped with any center in T. To prove the inclusion $X \subseteq Y$ we only have to prove that $\mathrm{bd} X \subseteq Y$.

Let $x \in \operatorname{bd} X$ and $B=B_{x}\left(R^{\prime}\right)$. Clearly $B \cap \operatorname{int} T=\emptyset$ and $B \cap \operatorname{bd} T \neq$ \emptyset.

Consider the case of the euclidean norm first.
Let $y \in \operatorname{bd} X \cap B$. If y is not a vertex of T then it lies on at most $d-1$ spheres of radius R that determine T. Let their centers be o_{1}, \ldots, o_{k}, $k \leq d-1$. Considering the linear approximation of T and B in some vicinity of y we see that int $X \cap \operatorname{int} B=\emptyset$ implies that

$$
x-y=\sum_{i=1}^{k} \alpha_{i}\left(o_{i}-y\right) \quad \forall i=1, \ldots, k \alpha_{i} \geq 0
$$

If there is only one index i such that $\alpha_{i} \neq 0$ then for such i we have $B \supseteq B_{o_{i}}(R)$, in this case B contains at least d vertices of T that lie on $\operatorname{bd} B_{o_{i}}(R)$.

Otherwise, consider the affine subspace

$$
L=\left\{p \in \mathbb{R}^{d}:\left|p-o_{1}\right|=\left|p-o_{2}\right|=\ldots=\left|p-o_{k}\right|\right\} .
$$

We have $\operatorname{dim} L \geq 2, y \in L$. All intersections $L \cap B_{o_{i}}(R)(i=1, \ldots, k)$ are the same ball $B^{\prime} \subset L$ and $L \cap B$ is another ball $B^{\prime \prime} \subset L$.

The direction of vector $x-y$ does not coincide with any of $o_{i}-y$ but lies in their cone hull. All the angles between $o_{i}-y$ and L are equal to some α, so the angle between $x-y$ and L is less than α, hence the radius of B^{\prime} is less than the radius of $B^{\prime \prime}$.

The intersection int $T \cap L$ in some vicinity of y coincides with $L \backslash B^{\prime}$ and $B^{\prime \prime}$ intersects $L \backslash B^{\prime}$ in any vicinity of y, this is a contradiction with $B \cap \operatorname{int} T=\emptyset$.

The case of $d=2$ and arbitrary norm with smooth and strictly convex ball is made in the same manner as above, in this case $k=1$ and we do not have to use equidistant set (which is not an affine subspace in general). Then we can approximate any norm by a norm with smooth and strictly convex ball and proceed by going to a limit.

Lemma 10. R-lower convex set intersects a concave simplex T of curvature radius R iff it contains a vertex of T.

Proof. Trivially deduced from Lemma 9.

4. Proofs of the theorems

Proof of Theorems 2 and 3 . If $\tau(\mathcal{F})=1$ the statement is true. Otherwise by Lemma 3 we have $S=S(\mathcal{F})$ and $s=s(\mathcal{F})$. We call elements of \mathcal{F} balls.

Denote the maximal radius of the ball in \mathcal{F} by R.
Take the balls $K_{1}, K_{2}, \ldots, K_{d+1}$ corresponding to S, they touch the facets of S in the respective vertices of s. Consider the balls $K_{1}^{\prime}, K_{2}^{\prime}, \ldots, K_{d+1}^{\prime}$ with radius R touching the respective facets of S in vertices of s.

It can be easily seen that $K_{i}^{\prime} \supseteq K_{i}$ for all $i=1, \ldots, d+1$. Each d of K_{i}^{\prime} have a common point and they all do not have a common point, hence they define a concave simplex T of curvature radius R, obviously $T \supseteq S$. Let the homothety with scale ratio $-1 / d$ that takes S to s take T to T^{\prime}, the latter concave simplex has curvature radius R / d.

By Lemma 4 any $K \in \mathcal{F}$ intersects s and therefore intersects T^{\prime}, its radius being at least R / d. Hence by Lemma $9 K$ contains one of $d+1$ vertices of T^{\prime}.

Proof of Theorem 4. If \mathcal{F} has a common point it is nothing to prove.
Otherwise, consider the ball $B(\mathcal{F})$ of minimal radius r intersecting every ball in \mathcal{F}. This is a well-known consequence of Helly's theorem that this ball is the ball of minimal radius intersecting $d+1$ balls of some subfamily $\mathcal{F}^{\prime}=\left\{B_{1}, B_{2}, \ldots, B_{d+1}\right\} \subseteq \mathcal{F}$ (remember that \mathcal{F} has Π_{d} property) and each intersection $B(\mathcal{F}) \cap B_{i}$ is exactly one point v_{i}.

Let H_{i} be the outer support halfspace for $B(\mathcal{F})$ in the point v_{i}. Then $S=\mathbb{R}^{d} \backslash \bigcup_{i=1}^{d+1}$ int H_{i} is a simplex with inscribed ball $B(\mathcal{F})$.

Let the ball $B \in \mathcal{F}$ have minimal radius R. Consider the case $d \geq 5$ first. Obviously, B and S satisfy the conditions of Lemma 6 and we have $r \leq 1 / 2 R$.

Note that a ball of radius r can be put into a concave simplex of curvature radius

$$
R^{\prime}=\frac{1}{\frac{d}{\sqrt{d^{2}-1}}-1} r=\left(d \sqrt{d^{2}-1}+d^{2}-1\right) r \leq 2 d^{2} r \leq d^{2} R .
$$

Thus the subfamily of balls in \mathcal{F} with radii $\geq d^{2} R$ has a transversal of cardinality $d+1$, which is the set of vertices of this concave simplex. Other balls in \mathcal{F} can be partitioned into two subfamilies with radii from R to $d R$ and from $d R$ to $d^{2} R$, by Theorem 3 these subfamilies have $(d+1)$-transversals. In total we obtain a $3(d+1)$-transversal for \mathcal{F}.

In the case $d \leq 4$ we note that all balls in \mathcal{F} intersect the smallest ball in \mathcal{F} of radius R, the latter can be put into a concave simplex of curvature radius

$$
\left(d \sqrt{d^{2}-1}+d^{2}-1\right) R \leq d^{3} R .
$$

The vertices of this concave simplex make a transversal for balls in \mathcal{F} with radii $\geq d^{3} R$. Other balls can be partitioned into three families with $(d+1)$-transversals to obtain the transversal for \mathcal{F} of size $4(d+$ $1)$.

Proof of Theorem 5. We omit the obvious case $\tau(\mathcal{F})=1$ and consider $S=S(\mathcal{F})$ and $s=s(\mathcal{F})$.

Note that any simplex $K \in \mathcal{F}$ is a negative homothet of S and a positive homothet of s. This can be deduced from considering the sets of outer and inner normals to facets of S, K, and s.

Assume that K does not contain any vertex of s.
If K intersects some d facets of s it has to contain their intersection, which is a vertex of s. Hence there are two facets of s that K does not intersect. Let these facets correspond to the halfspaces H_{1} and H_{2} from the family $\left\{H_{1}, H_{2}, \ldots, H_{d+1}\right\}$ of outer support halfspaces for facets of S.

Denote the translate of halfspace H_{i} containing the respective facet of s in its boundary by G_{i}.
K is a homothet of s, intersects s, and does not intersect the facet $\operatorname{bd} G_{1} \cap s$. Hence $K \subseteq G_{1}$. Similarly $K \subseteq G_{2}$. We show that the intersection

$$
G_{1} \cap G_{2} \cap H_{3} \cap \ldots \cap H_{d+1}
$$

is either empty or consists of one vertex of s, the latter is possible when $d=2$ only. For all $i=1, \ldots, d+1 H_{i} \subseteq G_{i}$ and therefore

$$
G_{1} \cap G_{2} \cap H_{3} \cap \ldots \cap H_{d+1} \subseteq G_{1} \cap G_{2} \cap G_{3} \cap \ldots \cap G_{d+1}=s
$$

The simplex s intersects halfspaces H_{3}, \ldots, H_{d+1} at one point each, hence

$$
G_{1} \cap G_{2} \cap H_{3} \cap \ldots \cap H_{d+1}
$$

can be non-empty when $d=2$ only, in this case in consists of one vertex of s.

Note that K does not contain any vertex of s and

$$
K \cap \bigcap_{i=3}^{d+1} K_{i} \subseteq K \cap \bigcap_{i=3}^{d+1} H_{i}=\emptyset,
$$

which is a contradiction with Π_{d} property.
We need another lemma to prove theorem 6 .
Lemma 11. If a halfspace H contains an R-upper convex set K then there exists a ball B of radius R such that $K \subseteq B \subseteq H$.

The author cannot give the exact reference to the first proof of this fact, a proof of this fact can be found in [5].

Proof of Theorem 6. We omit the case $\tau(\mathcal{F})=1$ and consider $S=$ $S(\mathcal{F})$ and $s=s(\mathcal{F})$.

Take the sets $K_{1}, K_{2}, \ldots, K_{d+1}$ in \mathcal{F} that correspond to S and consider the balls $K_{1}^{\prime}, K_{2}^{\prime}, \ldots, K_{d+1}^{\prime}$ with the following properties: the radius of K_{i}^{\prime} is $d R, K_{i}^{\prime} \supseteq K_{i}$, and $K_{i}^{\prime} \cap S=K_{i} \cap S$. Such K_{i}^{\prime} can be found by Lemma 11 if we consider for each K_{i} its respective outer support halfspace H_{i} for S.

The balls $K_{1}^{\prime}, K_{2}^{\prime}, \ldots, K_{d+1}^{\prime}$ have Π_{d} property and have no common point, so they make a concave simplex T of curvature radius $d R$ and $T \supseteq S$. Let the homothety that takes S to s take T to T^{\prime}, the latter has curvature radius R.

By Lemma 4 any $K \in \mathcal{F}$ intersects s and therefore intersects T^{\prime}. By Lemma $10 K$ contains one of $d+1$ vertices of T^{\prime}.

References

[1] Danzer, L., B. Grünbaum, V. Klee. Helly's theorem and its relatives // Convexity, Proc. of Symposia in Pure Math. Amer. Math. Soc., 7, 1963, 101-180
[2] Eckhoff, J. Helly, Radon, and Carathéodory type theorems // Handbook of Convex Geometry ed. by P.M. Gruber and J.M. Willis, North-Holland, Amsterdam, 1993, 389-448
[3] Grünbaum, B. On intersections of similar sets // Portugal. Math.,18, 1959, 155-164.
[4] Karasev, R.N. Transversals for the families of translates of a two-dimensional convex compact set // Discrete and Computational Geometry, 24(2/3), 2000, 345-353
[5] Polovinkin, E.S. Strongly convex analysis // Russian Acad. Sci. Sb. Math., 187(2), 1996, 103-130
E-mail address: r_n_karasev@mail.ru
Roman Karasev, Dept. of Mathematics, Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Russia 141700

[^0]: This research was supported by the Russian Foundation for Basic Research grants No. 03-01-00801 and 06-01-00648, and by the President's of Russian Federation grant No. MK-5724.2006.1.

