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Log-concavity of Whitney numbers of the first kind

Karim Adiprasito

Einstein Institute for Mathematics, Hebrew University of Jerusalem

(joint work with June Huh and Eric Katz)

A conjecture of Read predicts that the coefficients of the chromatic
polynomial of any graph form a log-concave sequence. A related conjec-
ture of Welsh predicts that the number of linearly independent subsets
of varying sizes form a log-concave sequence for any configuration of
vectors in a vector space.

All known proofs use Hodge theory for projective varieties, and the
more general conjecture of Rota for possibly “nonrealizable” configu-
rations/matroids is still open, mainly because no algebraic variety is
available to use intersection theory on. In my talk, I will present a com-
plete solution to Rota’s conjecture relying on a purely combinatorial
proof.
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A Quantitative Doignon–Bell–Scarf Theorem

Iskander Aliev

Cardiff University

(joint work with Robert Bassett, Jesus De Loera, and Quentin
Louveaux)

The famous Doignon–Bell–Scarf theorem is a Helly-type result about
the existence of integer solutions to systems of linear inequalities. The
purpose of this talk is to present the following quantitative generaliza-
tion:

Given an integer k, we prove that there exists a constant c(n, k),
depending only on the dimension n and k, such that if a bounded poly-
hedron

{x ∈ Rn : Ax ≤ b}

contains exactly k integer points, then there exists a subset of the rows,
of cardinality no more than c(n, k), defining a polyhedron that contains
exactly the same k integer points.

In this case c(n, 0) = 2n as in the original case of Doignon–Bell–
Scarf for infeasible systems of inequalities. We present new upper and
lower bounds for the constant c(n, k) and discuss some corollaries of the
obtained results.
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Small subset sums

Gergely Ambrus

Alfréd Rényi Institute of Mathematics, Budapest

(joint work with Imre Bárány and Victor Grinberg)

Consider a real d-dimensional normed space. Let V be a set of n
vectors of norm at most 1, which add up to 0. We prove that for every
k ≤ n, there exists a subset U of V with exactly k elements, whose sum
has norm at most dd/2e. We also demonstrate that for general norms,
this bound is the best possible. For the Euclidean and the maximum
norms, we strengthen the above estimate to O(

√
d).

The chromatic numbers of metric spaces with several
forbidden distances

Alexei Berdnikov

Moscow Institute of Physics and Technology, Faculty of Innovations
and High Technology

The chromatic number of a metric space (X, ρ) with a set of forbidden
distances A is the smallest number χ((X, ρ),A) of colors needed to color
all the points in X in such a way that any two points at a distance a ∈ A
receive different colors. The problem of finding the chromatic number of
the Euclidean space with one forbidden distance was proposed by Nelson
in 1950 and is now one of the most important problems of combinatorial
geometry.

In our talk, we will present new lower bounds for the chromatic
numbers of (Rn, `p) with k forbidden distances and an arbitrary p ∈ N.
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Cutting, embedding, bouncing characteristic classes

Pavle Blagojević

Freie Universität Berlin

(joint work with Imre Bárány, Frederick Cohen, Wolfgang Lück,
Roman Karasev, András Szűcs, and Günter M. Ziegler)

The properties of the regular representation bundles over the config-
uration space of k distinct points in the Euclidean space has classically
been studied extensively by F. Cohen, R. Cohen, Chisholm, Handel,
Kuhn, Neisendorfer, V. Vassiliev, and many others.

Motivated by geometric problems we present new computations of
twisted Euler classes, Stiefel–Whitney classes and their monomials as
well as corresponding Chern classes of these bundles.

Thus, we not only extend and complete previous work, supplying for
example a proof for a conjecture by Vassiliev, but also make progress
in solving and extending variety of problems from Discrete Geometry,
among them

1. the conjecture by Nandakumar and Ramana Rao that every convex
polygon can be partitioned into k convex parts of equal area and
perimeter;

2. Borsuk’s problem on the existence of “k-regular maps” between
Euclidean spaces, which are required to map any k distinct points
to k linearly independent vectors;

3. Ghomi and Tabachnikov problem about the existence of “`-skew
smooth embeddings” from a smooth manifold M to a Euclidean
space E, which are required to map tangent spaces at ` distinct
points of M into ` skew subspaces of E.
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Sections of the regular simplex – Volume formulas and
estimates

Hauke Dirksen

Kiel University

We will state a general formula to compute the volume of the section
of the regular n-simplex with some k-dimensional subspace. For hyper-
plane sections close to the centroid we give the optimal upper bound
using this formula.

S. Webb considered central sections of the simplex. He derived a
formula and showed that the hyperplane through the centroid containing
n− 1 vertices gives the maximal volume.

We generalize the formula to arbitrary dimensional sections that do
not necessarily have to contain the centroid. Then we show that, for
prescribed small distance of a hyperplane to the centroid, still the hy-
perplane containing n−1 vertices is volume maximizing. The proof also
yields a new and short argument for Webb’s result.

[1] K. Ball. Cube slicing in Rn. Proc. Amer. Math. Soc. 97:3 (1986),
465–473.

[2] S. Webb. Central slices of the regular simplex. Geometriae Dedi-
cata 61:1 (1996), 19–28.
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Enumerating simplicial polytopes

Moritz Firsching

Freie Universität Berlin

The classification of polytopes has been studied since antiquity. Since
the 1980s, no significant progress has been made in the classification of
simplicial polytopes with few vertices in low dimensions. Recently we
were able to enumerate all simplicial 4-polytopes with 10 vertices and
neighborly simplicial d-polytopes with n vertices for the pairs (d, k)=(4, 11),
(5, 10), (6, 11) and (7, 11), see [1]. We also decided for almost all enu-
merated polytopes, whether they can be realized with all vertices on
the unit sphere. We will indicate how these results were obtained using
optimization techniques and outline possible future applications.

[1] Moritz Firsching. Realizability and inscribability for some simpli-
cial spheres and matroid polytopes. arXiv:1508.02531

Affine Symmetries of Orbit Polytopes

Erik Friese

University of Rostock

(joint work with Frieder Ladisch)

An orbit polytope is the convex hull of an orbit under a finite group
G ≤ GL(d,R). We develop a general theory of possible affine symmetry
groups of orbit polytopes. For every group, we define an open and dense
set of generic points such that the orbit polytopes of generic points have
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similar affine symmetry groups. We show how to compute the affine
symmetries of generic orbit polytopes just from the character of G. We
prove that any symmetry group of a generic point is equal to G if G is
itself the affine symmetry group of some orbit polytope.

We use our theory to classify all finite groups which arise as affine
symmetry groups of orbit polytopes. The only groups arising not in that
way are elementary abelian groups of order 4, 8, and 16, abelian groups of
exponent greater than 2, and generalized dicyclic groups. This answers
a question of Babai who classified the orthogonal symmetry groups of
orbit polytopes.

[1] Erik Friese, Frieder Ladisch. Affine Symmetries of Orbit Polytopes.
arXiv:1411.0899

Volumes of flexible polyhedra in Lobachevsky spaces

Alexander Gaifullin

Steklov Mathematical Institute

A flexible polyhedron in the n-dimensional space is an (n−1)-dimen-
sional closed polyhedral surface that can be deformed continuously so
that every its face remains congruent to itself during the deformation,
but the deformation is not induced by an ambient rotation of the space.
Intuitively, one may think of a flexible polyhedron as of a polyhedral
surface with faces made of some rigid material and with hinges at edges
that allow dihedral angles to change continuously. However, this surface
may be self-intersected. This definition can be used in all spaces of con-
stant curvature, namely in the Euclidean spaces En, in the Lobachevsky
spaces Λn, and in the round spheres Sn.

One of the most interesting problems concerning flexible polyhedra is
the so-called bellows conjecture stated by Connelly in 1978 that asserts
that the volume of any flexible polyhedron (in dimensions greater than
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http://arxiv.org/abs/1411.0899


or equal to 3) is constant during the flexion. This conjecture was proved
in the Euclidean spaces of all dimensions (Sabitov [4] for n = 3, and the
author [2] for n ≥ 4). Flexible polyhedra of non-constant volumes were
found in all open hemispheres Sn+ (Alexandrov [1] for n = 3, and the
author [3] for n ≥ 4), thus disproving the bellows conjecture in Sn.

Theorem. The bellows conjecture is true for bounded flexible polyhedra
in odd-dimensional Lobachevsky spaces, i. e., the volume of any bounded
flexible polyhedron in Λn, where n is odd and n ≥ 3, is constant during
the flexion.

[1] V. Alexandrov, “An Example of a Flexible Polyhedron with Non-
constant Volume in the Spherical Space”, Beitr. Algebra Geom.,
Vol. 38, No. 1, 11–18 (1997).

[2] A. A. Gaifullin, “Generalization of Sabitov’s Theorem to Polyhe-
dra of Arbitrary Dimensions”, Discrete Comput. Geom., Vol. 52,
No. 2, 195–220 (2014).

[3] A. A. Gaifullin, “Embedded flexible spherical cross-polytopes with
nonconstant volumes”, Proc. Steklov Inst. Math., Vol. 288 (2015),
56–80.

[4] I. Kh. Sabitov, “Volume of a polyhedron as a function of its met-
ric”, Fundam. Appl. Math. Vol. 2, No. 4, 1235–1246 (1996) (in
Russian).
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Linear and semidefinite relaxations for spherical codes

Alexey Glazyrin

The University of Texas Rio Grande Valley

(joint work with Oleg Musin)

An n-dimensional spherical code is a subset of points on the unit
sphere in Rn. A natural way to define spherical codes is through their
Gram matrices. Matrix T corresponds to an n-dimensional spherical
code if and only if it has 1’s on the main diagonal, all entries are between
-1 and 1, T is positive-semidefinite and its rank is no greater than n.

For various extremal problems on spherical codes, almost all these
conditions on T are fairly easy to be taken into account since they are
linear or semidefinite. Unfortunately, it is quite complicated to check the
rank condition. Standard methods such as the Delsarte method relax
the rank condition to linear or semidefinite conditions. The point of our
work was to determine the gap between the exact description of codes
and the relaxed ones. As the main result of this research, we showed
that semidefinite relaxations can substitute the rank condition for n = 2
but not for larger n.
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Asymptotic lower bound and parametric family of
weighted spherical designs

Dmitry Gorbachev

Tula State University

(joint work with Andriy Bondarenko)

We study the quadrature formulas

|Sd|−1
∫
Sd

f(x) dx =

N∑
ν=1

λνf(xν),

where Sd is the Euclidean sphere, f ∈ R[x1, . . . , xd+1], deg f ≤ s, xν ∈
Sd and λν ≥ 0 are the nodes and weights respectively. The set X =
{(xν , λν)}Nν=1 is called the (weighted) spherical s-design. Let

Nd(s) := min
X is s-design

|X|.

For λ1 = · · · = λN , Seymour and Zaslavsky [9] proved that Nd(s) <
+∞. Recently, Bondarenko, Radchenko, and Viazovska [1] obtained
that

lim sup
s→+∞

s−dNd(s) < +∞

(the conjecture of Korevaar and Meyers [6]).
On the other hand, Delsarte, Goethals, and Seidel [4] proved that

cd & log2(e/2) ≥ 0.4426, where

cd := d−1 log2

(
dd lim inf

s→+∞
s−dNd(s)

)
.

Later Yudin [10] obtained that cd & 1. We show that

cd & log2

(
e(∆d)

−1/d/2
)
≥ 1.0416,
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where ∆d is the linear program bound for the density ∆d of sphere
packing [5], [3].

Also we present a parametric family Xλ1,λ2 of minimal weighted 4-
designs consisting 10 points on the sphere S2 [2] and some close re-
sults. The distribution of the nodes of Xλ1,λ2 is defined by polynomi-
als from Z[t, λ−11 , λ−12 ]. Our family includes two constructions from [7]
(X1/12,1/12) and [8] (X1/9,1/9).

The first author were partially supported by RFBR (project N 13-01-
00045), Ministry of education and science of Russian Federation (projects
N 5414GZ), and Dmitry Zimin’s Dynasty Foundation.

[1] A. Bondarenko, D. Radchenko, and M. Viazovska, Optimal asymp-
totic bounds for spherical designs, Ann. Math., 178 (2013), no. 2,
443–452.

[2] A. V. Bondarenko and D. V. Gorbachev, Minimal weighted 4-
designs on the sphere S2, Math. Notes, 91 (2012), no. 5–6, 738–
741.

[3] H. Cohn and N. Elkies, New upper bounds on sphere packings I,
Ann. Math. 157 (2003), no. 2, 689–714.

[4] P. Delsarte, J. M. Goethals, and J. J. Seidel, Spherical codes and
designs, Geom. Dedicata, 6 (1977), 363–388.

[5] D. V. Gorbachev, An extremal problem for entire functions of ex-
ponential spherical type, which is connected with the Levenshtein
bound for the density of a packing of Rn by balls (Russian), Izv.
Tul. Gos. Univ. Ser. Mat. Mekh. Inform., 6 (2000), no. 1, 71–78.

[6] J. Korevaar, J. L. H. Meyers, Spherical Faraday cage for the case of
equal point charges and Chebyshev-type quadrature on the sphere,
Integral Transforms Spec. Funct., 1 (1993), no. 2, 105–117.

[7] A. S. Popov, Cubature formulae for a sphere invariant under cyclic
rotation groups, Russ. J. Numer.Anal. Math. Modelling, 9 (1994),
no. 6, 535–546.

[8] Sangwoo Heo and Yuan Xu, Constructing cubature formulae for
spheres and balls, J. Comp. Appl. Math., 112, no. 1–2 (1999),
95–119.

15



[9] P. D. Seymour and T. Zaslavsky, Averaging sets: a generalization
of mean values and spherical designs, Adv. Math., 52 (1984), 213–
240.

[10] V. A. Yudin, Lower bounds for spherical designs, Izv. Math., 61
(1997), no. 3, 673–683.

The Grünbaum–Hadwiger–Ramos hyperplane mass partition
problem

Albert Haase

Freie Universität Berlin

(joint work with Pavle V. M. Blagojević, Florian Frick, Günter
M. Ziegler)

How should a version of the ham-sandwich theorem for an arbitrary
number of measures and hyperplanes be phrased? This question goes
back to Grünbaum (1960) [3]. It lead to the Grünbaum–Hadwiger–
Ramos hyperplane mass partition problem: For each j ≥ 1 and k ≥ 1,
determine the smallest dimension d = ∆(j, k) such that for every col-
lection of j masses on Rd there are k affine hyperplanes that cut each
of the j masses into 2k equal pieces. In this context masses are usually
assumed to be probability Borel measures with connected support that
vanish on hyperplanes.

Bounds for ∆(j, k) have been established by Avis (for j = 1) [1] and
Ramos [6] (lower bounds), and Mani-Levitska, Vrećica & Živaljević [5]
(upper bounds):⌈

2k−1
k j

⌉
≤ ∆(j, k) ≤ j + (2k−1 − 1)2blog2 jc.

Here 2blog2 jc is j “rounded down to the next power of 2,” so 1
2j <

2blog2 jc ≤ j. However, few exact values of ∆(j, k) are known [2, 4, 5, 6].
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And, more suprisingly, all known exact values are equal to the lower
bound, which is obtained by a simple general position argument.

In this talk I explain how we were able to obtain new values for
∆(j, k) by employing equivariant relative obstruction theory to show
that a certain “test map” without zeros cannot exist.

[1] David Avis. Non-partitionable point sets, Inform. Process. Letters
19 (1984), no. 3, 125-129.

[2] Pavle V. M. Blagojević, Florian Frick, Albert Haase, Günter
M. Ziegler, Topology of the Grünbaum–Hadwiger–Ramos hyper-
plane mass partition problem, Preprint, 27 pages, February 2015.
arXiv:1502.02975

[3] Branko Grünbaum, Partitions of mass-distributions and of convex
bodies by hyperplanes. Pacific J. Math. 10 (1960), no. 4, 1257-
1261.

[4] Hugo Hadwiger, Simultane Vierteilung zweier Körper, Arch.
Math. 17 (1966), no. 3, 274-278.

[5] Peter Mani-Levitska, Sinǐs Vrećica, Rade T. Živaljević, Topology
and combinatorics of partitions of masses by hyperplanes, Adv.
Math. 207 (2006), no. 1, 266-296.

[6] Edgar A. Ramos, Equipartitions of mass distributions by hyper-
planes, Discrete Comput. Geom. 15 (1996), no. 2, 147-167.
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Orthogonal colorings of the sphere

Andreas Holmsen

KAIST, Daejeon and EPFL, Lausanne

(joint work with Seunghun Lee)

An orthogonal k-coloring of the two-dimensional unit sphere S2, is a
partition of S2 into k parts such that no part contains a pair of orthogonal
points, that is, a pair of points at spherical distance π/2 apart. It is a
simple and well-known result that an orthogonal coloring of S2 requires
at least four parts, and orthogonal 4-colorings can easily be constructed
from a regular octahedron centered at the origin. An intriguing and
natural question is whether or not every orthogonal 4-coloring of S2 is
such an octahedral coloring.

In this talk I will give several characterizations of orthogonal 4-
colorings of S2 which are octahedral. For instance, if every color class
has a non-empty interior, then the coloring is octahedral.

In constrast to these results I will give an example of an orthogonal
9-coloring of S2 where each color class is dense in S2.

[1] Andreas Holmsen and Seunghun Lee. Orthogonal colorings of the
sphere. arXiv:1505.02514

18

http://arxiv.org/abs/1505.02514


Limits of order types

Alfredo Hubard

Institute National de Recherche en Informatique et en Automatique,
Sophia-Antipolis

(joint work with Xavier Goaoc, Rémi de Joannis de Verclos
Jean-Sébastien Séréni, and Jan Volec)

Order types are invariants of finite point sets that appear in a number
of contexts in combinatorial and computational geometry. In this talk I
will consider order types from the point of view of limits of combinatorial
objects.

Using the flag algebra framework framework we obtain some new
concrete results to old combinatorial problems. Guided by analogies
with the theory of graphons, we draw a number of connections with
measure theory.

The Center Problem in Strictly Convex Planes

Thomas Jahn

Technische Universität Chemnitz

Approximating a given finite set of points by a single point (called the
center) in a minimax fashion is an important task in operation research
and statistical analysis. The problem can be solved by finding centers
of triples of given points. This inherent discrete geometric structure is
utilized by an algorithm designed for the Euclidean plane in the early
1970s. It turns out that this algorithm works well in any two-dimensional
vector space equipped with a strictly convex norm. The talk is based
on the paper
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[1] Thomas Jahn. Geometric Algorithms For Minimal Enclosing Discs
In Strictly Convex Normed Planes. Contributions to Discrete
Mathematics, to appear.

Balanced generalized lower bound inequality for
simplicial polytopes

Martina Juhnke-Kubitzke

Universität Osnabrück

(joint work with Satoshi Murai)

A remarkable and important property of face numbers of simplicial
polytopes is the generalized lower bound inequality, which says that the
h-vector of any simplicial polytope is unimodal. Recently, for balanced
simplicial d-polytopes, that is simplicial d-polytopes whose underlying
graph is d-colorable, Klee and Novik proposed a balanced analogue of
this inequality, that is stronger than just unimodality.

In order to prove this conjecture, we will show a Lefschetz prop-
erty for rank-selected subcomplexes of balanced simplicial polytopes and
thereby obtain new inequalities for their h-vectors.

The relevant publications on this topic are listed below.

[1] M. Juhnke-Kubitzke and S. Murai, Balanced generalized lower
bound inequality for simplicial polytopes, arXiv:1503.06430
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[2] S. Klee and I. Novik, Lower Bound Theorems and a General-
ized Lower Bound Conjecture for balanced simplicial complexes,
arXiv:1409:5094.

[MW] P. McMullen and D.W. Walkup, A generalized lower-bound con-
jecture for simplicial polytopes, Mathematika 18 (1971), 264–273.

[3] S. Murai and E. Nevo, On the generalized lower bound conjecture
for polytopes and spheres, Acta Math. 210 (2013), 185–202.

[St2] R.P. Stanley, The number of faces of simplicial convex polytopes,
Adv. Math. 35 (1980), 236–238.

Recent results on local h-vectors

Lukas Katthän

Universität Osnabrück

(joint work with Martina Juhnke-Kubitzke and Richard Sieg)

Let ∆ be a (finite) simplicial complex. The f -vector of ∆ counts the
number of faces of each dimension in ∆. Often it is more convenient to
consider the h-vector instead, which is obtained from the f -vector by a
certain linear transformation. In order to understand the change of the
h-vector under a subdivision of ∆, the local h-vector was introduced by
Kalai and Stanley. This local h-vector is an invariant associated to a
subdivision of a single simplex.

In this talk, I will present some recent results about the set of possible
local h-vectors for particular classes of subdivisions. This is joint work
with Martina Juhnke-Kubitzke and Richard Sieg.
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Translative covering of the space with slabs

Andrey Kupavskii

Ecole Polytechnique Fédérale de Lausanne, Moscow Institute of
Physics and Technology

(joint work with János Pach)

The set of points S lying between two parallel hyperplanes in Rd at
distance w from each other is called a slab of width w. We say that a
sequence of slabs S1, S2, . . . permits a translative covering of a subset
B ⊆ Rd if there are suitable translates S′i of Si (i = 1, 2, . . .) such that
B ⊆ ∪∞i=1S

′
i.

It was shown by Makai and Pach [2] and, independently, by Erdős
and Straus (unpublished, see [1]) that any sequence of slabs whose total
weight is divergent permits a translative covering of the whole plane.
Actually, they showed that there is a constant c > 0 such that any system
of slabs in the plane with total width at least c permits a translative
covering of a disk of diameter 1. This result may be seen as a dual to
the the famous Tarski’s result [3], which states that the total width of
any system of slabs that cover a disk of unit diameter is at least 1.

As for the higher dimensions, Makai and Pach conjectured that

Conjecture 1. (Makai-Pach) Let d be a positive integer. A sequence
of slabs in Rd with widths w1, w2, . . . permits a translative covering of
Rd if and only if

∑∞
i=1wi =∞.

Let w1 ≥ w2 ≥ . . . be a monotone decreasing sequence of positive
numbers. Improving some earlier results of Groemer, we prove the fol-
lowing theorem

Theorem 1. Let d be a positive integer, and let w1 ≥ w2 ≥ . . . be a
monotone decreasing infinite sequence of positive numbers such that

lim sup
n→∞

w1 + w2 + . . .+ wn
log(1/wn)

> 0.

Then any sequence of slabs Si of width wi (i = 1, 2, . . .) permits a transla-
tive covering of Rd.
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Let Pd denote the family of all polynomials of degree at most d in one
variable x, with real coefficients. A sequence of positive numbers x1 ≤
x2 ≤ . . . is called Pd-controlling if there exist y1, y2, . . . ∈ R such that for
every polynomial p ∈ Pd there exists an index i with |p(xi)− yi| ≤ 1. In
fact, the notion of controlling sequences for different classes of functions
is closely related to the first topic of this abstract, translative coverings
of the space by slabs. We settle a problem from Makai and Pach’s paper
in the following theorem.

Theorem 2. Let d be a positive integer and x1 ≤ x2 ≤ . . . be a monotone
increasing infinite sequence of positive numbers. The sequence x1, x2, . . .
is Pd-controlling if and only if

lim
n→∞

(x−d1 + x−d2 + . . .+ x−dn ) =∞.

[1] H. Groemer, On coverings of convex sets by translates of slabs,
Proc. Amer. Math. Soc. 82 (1981), no. 2, 261–266.

[2] E. Makai Jr. and J. Pach, Controlling function classes and covering
Euclidean space, Stud. Scient. Math. Hungarica 18 (1983), 435–
459.

[3] A. Tarski, Uwagi o stopnii równowaznosci wielokatów, Parametr
2 (1932), 310–314.

Vertex-Transitive Polyhedra

Undine Leopold

Technische Universität Chemnitz

The classification of vertex-transitive polyhedra of genus g ≥ 2 in
Euclidean 3-space, started by Grünbaum and Shephard in 1984 [1], has
proven to be a difficult problem despite its rigid setting. Here, polyhedra
are face-to-face tessellations of closed, connected, orientable, embedded
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surfaces by simple, plane polygons. Seven examples are known, and it
is also known that the symmetry groups must be among the rotation
groups of the Platonic solids [2]. The investigation of tetrahedral rota-
tion symmetry has been completed [3, 4], with no new examples besides
the known polyhedron of genus 3.

However, many more candidate maps can be enumerated for the
octahedral and icosahedral case. In this talk, I will highlight the con-
nections between symmetry, geometry, and topology for candidate maps
and polyhedra, and present an overview of recent progress.

[1] B. Grünbaum and G. C. Shephard. Polyhedra with Transitivity
Properties. C. R. Math. Rep. Acad. Sci. Canada, 6(2):61–66, 1984.

[2] Gábor Gévay, Egon Schulte, and Jörg M. Wills. The regular
Grünbaum polyhedron of genus 5. Adv. Geom., 14(3):465–482,
2014.

[3] Undine Leopold. Vertex-Transitive Polyhedra in Three-Space. Pro-
Quest LLC, Ann Arbor, MI, 2014. Thesis (Ph.D.)–Northeastern
University.

[4] Undine Leopold. Vertex-Transitive Polyhedra of Higher Genus, I.
arXiv:1502.07497
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Half-space depth of a line

Alexander Magazinov

Alfréd Rényi Institute of Mathematics, Budapest

(joint work with Attila Pór)

Let α be a k-flat and µ a probabilistic measure in Rd (0 ≤ k < d).
Define the depth of α as follows:

depth(α) = inf{µ(H) : H is a closed half-space, α ⊂ ∂H}.

To distinguish with other notions of depth, the above defined depth is
sometimes called half-space depth or Tukey depth.

Bukh, Matoušek and Nivasch [1] proposed the following conjecture:

Conjecture 2. Let a pair of integers (d, k) with 0 ≤ k < d be given.
Then for every probabilistic measure µ in Rd there exists a k-flat α in
Rd (a centerflat) such that

depth(α) ≥ k + 1

k + d+ 1
.

The conjecture is true for k = 0 (Rado’s centerpoint theorem, 1946,
see [4]), k = d− 1 (trivial), and k = d− 2 (due to Bukh, Matoušek and
Nivasch [1]).

A result by Klartag [3] implies that, if d− k is fixed, then for every
ε > 0, with d sufficiently large depending on ε, and for every probabilistic
measure µ in Rd there exists a k-flat α in Rd such that

depth(α) >
1

2
− ε.

For k = 0 and k = d − 1 the constant k+1
k+d+1 cannot be increased.

Buch and Nivash [2] have proved that for k = 1 the constant k+1
k+d+1 =

2
d+2 also cannot be increased.
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Due to Rado’s centerpoint theorem, for every d and k and µ, one
can find a k-flat α (in fact, in any direction) such that

depth(α) ≥ 1

d− k + 1

(the trivial bound).
In this talk we announce the result that for k ≥ 1 the trivial bound

is not optimal. Certainly, it is enough to consider just the case k = 1.
Namely, we have the following result:

Theorem 3. There exists a function c(d) > 0 such that for every prob-
abilistic measure µ in Rd there is a (1-dimensional) line α with

depth(α) ≥ 1

d
+ c(d).

[1] Boris Bukh, Jǐŕı Matoušek, Gabriel Nivasch. Stabbing simplices by
points and flats. Discrete and Computational Geometry 43 (2010),
321–338.

[2] Boris Bukh, Gabriel Nivasch. Upper bounds for centerlines. Jour-
nal of Computational Geometry 3:1 (2012), 20–30.

[3] Bo’az Klartag. On nearly radial marginals of high-dimensional
probability measures. Journal of the European Mathematical So-
ciety 12 (2010), 723–754.

[4] Richard Rado. A theorem on general measure. Journal of the Lon-
don Mathematical Society 21 (1946), 291–300.
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About lower bound for the number of facets of a
k-neighborly polytope

Alexander Maksimenko

P.G. Demidov Yaroslavl State University

Let P be a d-polytope with f0(P ) vertices and let fi(P ) be the
number of i-faces of P , 1 ≤ i ≤ d− 1. The problem of estimating fi(P )
(where P belongs to some class of polytopes) in terms of f0(P ) is well
known. The solutions for the class of simplicial polytopes are known
as the upper bound and the lower bound theorems (see [1] for details).
In 1990, G. Blind and R. Blind [2] solved the upper bound problem for
the class of polytopes without a triangle 2-face. We raise the question
for the class of 2-neighborly polytopes.

A d-polytope P is called k-neighborly polytope if each subset of k
vertices forms the vertex set of some face of P . If, in addition, k =
bd/2c, then P is called neighborly polytope. In particular, for d ≥ 4
every neighborly d-polytope is 2-neighborly. The family of neighborly
polytopes are investigated very intensively (see, e.g., [1]). It is seems
that k-neighborly polytopes are very common among convex polytopes
[3, 4]. Moreover, they appear as faces (with superpolynomial number
of vertices) in many known combinatorial polytopes, associated with
NP-complete problems [5, 6].

As a reference point we pose the following conjecture.

Conjecture 3. The number of facets fd−1(P ) of a k-neighborly poly-
tope P cann’t be less than the number of its vertices f0(P ) for k ≥ 2.

Proposition 4. The conjecture is true for d ≤ 2k + 2.

Theorem 5. fd−1(P ) ≥ d+ k2 + 1 for a k-neighborly d-polytope P with
f0(P ) ≥ d+ 2.

With the help of Gale diagrams we have found the tight lower bound
for the case f0(P ) = d+ 3.
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Theorem 6. If P is a k-neighborly d-polytope with f0(P ) = d+ 3, then

fd−1(P )− f0(P ) ≥

{
2(k2 − 1) for k ≥ 4,

(k + 2)(k2 + k − 3)/3 for k ∈ {2, 3}.

[1] B. Grünbaum. Convex polytopes, 2nd edition (V. Kaibel, V. Klee
and G.M. Ziegler, eds), Springer, 2003.

[2] G. Blind and R. Blind. Convex polytopes without triangular faces.
Isr. J. Math. 1990, V. 71, P. 129–134.

[3] Henk M., Richter-Gebert J. and Ziegler G. Basic properties of
convex polytopes. In J.E. Goodman and J. O’Rourke, editors,
Handbook of Discrete and Computational Geometry, chapter 16,
P. 355–382. Chapman & Hall/CRC Press, Boca Raton, 2nd edi-
tion, 2004.

[4] R. Gillmann. 0/1-Polytopes: Typical and Extremal Properties.
PhD Thesis, TU Berlin (2006).

[5] A. Maksimenko k-Neighborly Faces of the Boolean Quadric Poly-
topes. Journal of Mathematical Sciences. 2014, V. 203, Issue 6,
P. 816–822.

[6] A. Maksimenko. A special role of Boolean quadratic polytopes
among other combinatorial polytopes. arXiv:1408.0948

Discrete Geometry in Minkowski Spaces

Horst Martini

TU Chemnitz (Germany)

In recent decades, many papers appeared in which typical problems
of Discrete Geometry are investigated, but referring to finite dimensional
real Banach spaces (i.e., to Minkowski Geometry) or, even more general,
to spaces with so-called asymmetric norms (gauges).
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In many cases the extension of basic geometric notions, needed for
posing these problems in non-Euclidean Banach spaces, is already inter-
esting enough. Examples of such notions and problems are: circumballs
and -centers of convex sets (e.g., studying Chebyshev sets), correspond-
ing inballs and -centers, packings and coverings (for instance, Lebesgue’s
universal covering problem), problems from Location Science (like min-
sum hyperplanes and minsum hyperspheres), properties of curves and
surfaces in the spirit of Discrete Differential Geometry, reduced and
complete sets (e.g., for polyhedral norms), applications of notions from
Combinatorial Geometry (such as Helly dimension), and generalized
theorems from incidence geometry (e.g., the theorems of Clifford and
Miquel).

In this talk, an overview to several such problems and related needed
notions is given.

Solving Mordell equations via the Shimura–Taniyama
conjecture

Benjamin Matschke

Max Planck Institute for Mathematics, Bonn

(joint work with Rafael von Känel)

In this talk certain discrete geometry (or geometry of numbers) as-
pects of the project [2] will be presented. One of two main goals of this
project is to practically solve the classical Mordell equation

y2 = x3 + a (1)

over the integers (and more generally over the S-integers) for any given
integer a 6= 0. Using the Shimura–Taniyama conjecture and a method
of Faltings [1] (Arakelov, Paršin, Szpiro) we obtain new height bounds
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for the solutions (x, y) of (1), improving on previous bounds that were
derived from the theory of linear forms in logarithms.

Using these height bounds, only finitely many candidates (x, y) for
equation (1) remain, however their number is still huge. In order to
reduce the search space further, practical sieves have been developed
by de Weger [3], Zagier, Stroeker–Tzanakis, Gebel–Pethö–Zimmer, and
others. In [2] the so-called elliptic logarithm sieve is constructed, which
improves in several ways the previous sieves and thus yields a faster
algorithm.

One of these improvement motivates the following problem in dis-
crete geometry, related to non-convex polytopes.

Problem. Let A := Rn≥0. Given k ≥ n, how does one choose x1, . . . , xk ∈
A with ||xi||1 = 1 such that sup{||a||1 : a ∈ A\

⋃
i(xi +A)} is minimal?

As the application of this problem is an algorithm, we do not need the
exact answer to this problem; an approximate solution is good enough.

[1] G. Faltings. Endlichkeitssätze für abelsche Varietäten über Zahl-
körpern. Invent. Math. 73(3) (1983), 349–366.

[2] R. von Känel, B. Matschke. Solving S-unit and Mordell equations
via Shimura–Taniyama conjecture. Preprint.

[3] B. M. M. de Weger. Algorithms for Diophantine equations. Vol-
ume 65 of lCWI Tract, Stichting Mathematisch Centrum Centrum
voor Wiskunde en Informatica, Amsterdam, 1989.
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Variations of the nerve theorem and Meshulam–Sperner
type results

Luis Montejano

National University of Mexico at Querétaro

Let K be a simplicial complex. Suppose the vertices of K are painted
with I = {1, . . . ,m} colors. We study the existence of a rainbow sim-
plex of K under the hypothesis that certain homology groups of certain
subcomplexes of K are zero. By using this ideas, we are able to prove
several geometric Hall-type results.

Proof of a conjecure of Bárány, Katchalski, and Pach

Márton Naszódi

Eötvös University, Budapest and EPFL, Lausanne

Bárány, Katchalski, and Pach proved the following quantitative form
of Helly’s theorem: If the intersection of a family of convex sets in Rd
is of volume one, then the intersection of some subfamily of at most 2d
members is of volume at most some constant v(d). They gave the bound
v(d) ≤ d2d2 , and conjectured that v(d) ≤ dcd. We confirm it.

[1] I. Bárány, M. Katchalski, and J. Pach, Quantitative Helly-type
theorems, Proc. Amer. Math. Soc. 86 (1982), no. 1, 109–114.

[2] I. Bárány, M. Katchalski, and J. Pach, Helly’s theorem with vol-
umes, Amer. Math. Monthly 91 (1984), no. 6, 362–365.

[3] M. Naszódi, Proof of a conjecture of Bárány, Katchalski and Pach.
arXiv:1503.07491

31

http://arxiv.org/abs/1503.07491


Volume and lattice points counting for the
cyclopermutohedron

Ilia Nekrasov

Chebyshev Laboratory, St. Petersburg State University

(joint work with Gaiane Panina)

The standard permutohedron Πn is defined as the convex hull of all
points in Rn that are obtained by permuting the coordinates of the
point (1, 2, . . . , n). The face lattice of the permutohedron realizes the
combinatorics of linearly ordered partitions of the set [n] = {1, . . . , n}.

Similarly, the cyclopermutohedron CPn+1 [8] is a virtual polytope
(see [9]) which realizes the combinatorics of cyclically ordered partitions
of the set [n]: k-faces are labeled by (all possible) cyclically ordered
partitions of the set [n+ 1] = {1, . . . , n, n+ 1} into exactly (n+ 1− k)
non-empty parts, where (n + 1 − k) > 2. The incidence relation in
CPn+1 (like the “permutohedron case”) corresponds to the refinement
of partitions: a cell F contains a cell F ′ whenever the label of F ′ refines
the label of F .

It is known that the volume of the standard permutohedron can be
expressed in terms of the number of trees with n labeled vertices. The
number of integer points of the standard permutohedron equals the num-
ber of forests on n labeled vertices.

The purpose of this talk is to show that the volume of the cycloper-
mutohedron also equals some weighted number of forests, which even-
tually reduces to zero for all n. We also derive a combinatorial formula
for the number of integer points in the cyclopermutohedron (see [5]).

Acknowledgment. The present research is supported by Rus-
sian Foundation for Basic Research project 15-01-02021, by the Cheby-
shev Laboratory under RF Government grant 11.G34.31.0026, and JSC
“Gazprom Neft”.

[1] M. Farber. Invitation to topological robotics. European Mathe-
matical Society, 2008.
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[2] M. Farber and D. Schütz. Homology of planar polygon spaces.
Geom. Dedicata, 125 (2007), 75-92.

[3] A. Khovanskii. Newton polyhedra and toroidal varieties. Func-
tional Analysis and Its Applications, 11(4):289–296, 1977.

[4] A. Khovanskii and A. Pukhlikov. Finitely additive measures of
virtual polytopes. St. Petersburg Math. J., Vol. 4, 2 (1993), 337-
356.

[5] I. Nekrasov and G. Panina. Volume and lattice points counting for
the cyclopermutohedron. arXiv:1505.00352

[6] G. Panina. Virtual polytopes and some classical problems. St. Pe-
tersburg Math. J., Vol. 14, 5 (2003), 823-834.

[7] G. Panina. Moduli space of a planar polygonal linkage: a combi-
natorial description. arXiv:1209.3241

[8] G. Panina. Cyclopermutohedron. Trudy MIAN, 2014.

[9] G. Panina and I.Streinu. Virtual polytopes. Oberwolfach preprint
OWP 2015-02.

[10] A. Postnikov. Permutohedra, Associahedra, and Beyond. Int Math
Res Notices Vol. 2009 (2009), 1026-1106.
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Accidental Meetings

János Pach

Ecole Polytechnique Fédérale de Lausanne and Alfred Renyi Institute
of Mathematics, Budapest

(joint work with Natan Rubin and Gábor Tardos)

If two closed Jordan curves in the plane have precisely one point in
common, then it is called a touching point. All other intersection points
are called crossing points. We establish a Crossing Lemma for closed
curves: In any family of n pairwise intersecting simple closed curves in
the plane, no three of which pass through the same point, the number of
crossing points exceeds the number of touching points by a factor that
tends to infinity as n gets larger.

As a corollary, we prove the following long-standing conjecture of
Richter and Thomassen: The total number of intersection points be-
tween any n pairwise intersecting simple closed curves in the plane, no
three of which pass through the same point, is at least (1− o(1))n2.

Cyclopermutohedron

Gaiane Panina

Saint-Petersburg Institute for Informatics and Automation RAS, Saint
Petersburg State University

It is known that the k-faces of the permutohedron Πn can be labeled
by (all possible) linearly ordered partitions of the set [n] = {1, ..., n}
into (n−k) non-empty parts. The incidence relation corresponds to the
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refinement: a face F contains a face F ′ whenever the label of F ′ refines
the label of F .

In the talk we consider the cell complex defined in analogous way,
replacing linear ordering by cyclic ordering. Namely, the k-cells of the
complex are labeled by (all possible) cyclically ordered partitions of the
set [n+ 1] into (n+ 1− k) non-empty parts, where (n+ 1− k) > 2. The
incidence relation in the complex again corresponds to the refinement.

The complex cannot be represented by a convex polytope, since it is
not a combinatorial sphere (not even a combinatorial manifold). How-
ever, it can be represented by some virtual polytope (that is, Minkowski
difference of two convex polytopes) which we call cyclopermutohedron.
It is defined explicitly, as a weighted Minkowski sum of line segments.
Informally, the cyclopermutohedron can be viewed as “permutohedron
with diagonals”, see the figure. One of the motivations is that the cyclop-
ermutohedron is a “universal” polytope for moduli spaces of polygonal
linkages.

(a)

(b)                                   ( c)                                  (d)

2314                 2341

3214                  3241

2431                3421

2134         3124

1324                     3142            4213        3412

1342          4123

4312

1234
2143                       2413                     4231       4321

1243

1423 1432             4132

[1] Gaiane Panina, “Cyclopermutohedron”, Proceedings of the
Steklov Institute of Mathematics, 2015, 288, 132–144.
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Multilevel polynomial partitions

Zuzana Patáková

Charles University in Prague

(joint work with Jǐŕı Matoušek)

The talk is devoted to the polynomial partitioning method of Guth
and Katz, which partitions a given n-point set P ⊂ Rd using the zero set
Z(f) of a suitable d-variate polynomial f . Applications of this result are
often complicated by the problem, what should be done with the points
of P lying within Z(f)? A natural approach is to partition these points
with another polynomial and continue further in a similar manner.

As a main result, we provide a polynomial partitioning method with
up to d polynomials in dimension d, which allows for a complete decom-
position of the given point set.

In more detail: given an n-point set P ⊂ Rd and a parameter r > 1,
we say that a nonzero polynomial f ∈ R[x1, . . . , xd] is a 1

r -partitioning
polynomial for P if none of the connected components of Rd \ Z(f)
contains more than n/r points of P .

As mentioned before, it is crucial to deal with the situation when
the point set P ⊂ Rd lies within a zero set: We show that given r > 1, a
k-dimensional complex variety V whose all irreducible components have
dimension k as well, and a finite point set P ⊂ V ∩ Rd, there exists a
1
r -partitioning polynomial for P of degree at most O(r1/k) that does not
vanish on any of the irreducible components of V .

Assuming, moreover, that V is irreducible of degree ∆ and r ≥ ∆k+1,
we can show that there exists a 1

r -partitioning polynomial for P of degree

at most O((r/∆)1/k). This confirms a conjecture of Matoušek and the
speaker mentioned in [2, Conj. 3.2].

The relevant publications on this topic are listed below.

[1] Larry Guth, Nets Katz: On the Erdős distinct distances problem
in the plane. Ann. Math., 181: 155–190, 2015.
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[2] Jǐŕı Matoušek, Zuzana Patáková: Multilevel polynomial partitions
and simplified range searching. Dis. Comp. Geom., 54(1):22–41,
2015.

[3] Zuzana Patáková: Problems in discrete geometry. Doctoral thesis.

Invariant zonoids and L1 spectral radius of matrices

Vladimir Protasov

Moscow State University

Every irreducible set of linear operators {A1, . . . , Am} in Rd pos-
sesses an invariant zonoid G ⊂ Rd (the Minkowski sum of a countable
set of segments) such that G is homothetic to the Minkowski sum of
images AiG, i = 1, . . . ,m. The coefficient of homothety is equal to the
so-called L1 spectral radius of those operators [2] This concept origi-
nated in 1995 with Wang [1] found numerous applications in functional
analysis, approximation theory, probability, etc. We analyze the invari-
ant zonoid G to compute or approximate the L1-spectral radius. The
existence of efficient methods of approximation follows from the results
of Bourgain, Lindenstrauss, and Milman [4]. We consider applications
to the problem of characterising matrix sets sharing a common invariant
cone [3] and to the study of distributions of power random series with
integer coefficients.

[1] Y.Wang. Two-scale dilation equations and the mean spectral ra-
dius. Random Comput. Dynamic, 4(1), 49–72.

[2] V.Yu.Protasov. Extremal Lp-norms and self-similar functions. Lin-
ear Alg. Appl., 428 (2008), 2339-2357. 2339-2357.

[3] V.Yu.Protasov. When do several linear operators share an invari-
ant cone? Linear Alg. Appl., 433 (2010), 781–789. 2339-2357.
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[4] J.Bourgain, J.Lindenstrauss, and V.Milman. Approximation of
zonoids by zonotopes. Acta Mathematica, 162 (1989), no 1, 73–
141.

Around Turán’s theorem for some distance graphs

Philipp Pushnyakov

Moscow Institute of Physics and Technology, Faculty of Innovations
and High Technology

In the talk, we consider a sequence of distance graphs

G(n) = (V (n), E(n)) :

V (n) = {x = (x1, . . . , xn) : xi ∈ {0, 1}, x1 + · · ·+ xn = 3},

E(n) = {{x,y} : |x− y| = 2},

where by |x−y| we denote the Euclidean distance between vectors x,y.
This sequence is deeply motivated by the Nelson–Hadwiger problem on
coloring metric spaces.

We define r(W ) as the number of edges of a graph G(n) on a subset
of vertices W ⊂ V (n). Also we put

r(l(n)) = min
|W |=l(n), W⊂V (n)

r(W ).

In the talk, we will exhibit an almost exhaustive study of the quantity
r(l(n)).
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Shadows of a circle

Edgardo Roldán Pensado

Universidad Nacional Autónoma de México

(joint work with Michael G. Dobbins, Heuna Kim, and Luis
Montejano)

Given an embedding of a topological space A in some Euclidean space
of higher dimension, what does the topology of its shadows tell us about
the topology of A? This is a very hard and general question. When A
is a closed curve we show that it cannot have three linearly independent
projections that are paths. However, it is possible to embed it so that
its projections are trees as in the figure.

This curve is on the cover of [1] which also includes some of its
history. The proof of our result is topological but uses nice and simple
ideas.

[1] P. Winkler. Mathematical mind-benders. CRC Press, 2007.
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A general equilibrium approach to the multidimensional
Tiebout hypothesis

Alexei Savvateev

Moscow Institute of Physics and Technology

(joint work with K. Sorokin, S. Weber)

Consider the following problem called ‘multidimentional group for-
mation’. We are given a probabilistic distribution over a finite-dimentional
convex compactum, X ⊂ Rd. This distribution is assumed to admit con-
tinuous density f : X → R, which is in addition bounded away from
zero: ∃δ : ∀x ∈ X f(x) ≥ δ.

We look for a stable, ‘migration-proof’ partition of X into a pre-
scribed number n of nonempty measurable compacta, X = S1∪· · ·∪Sn,
almost mutually exclusive. Stability is meant in a game-theoretic sense,
when the “centers” of those groups are given via m1, . . . ,mn and each
point x ∈ X is interpreted as a citizen choosing between those n juris-
dictions.

In searching for the stable configuration, citizen x compares cost
functions in all the jurisdictions, cost functions which split into “mone-
tary” and “transportation” parts:

const∫
Si
f(y)dy

+ `(x,mi),

where `(·, ·) is a given metric over X, and picks up one of jurisdictions
which minimize costs. Above, a spectacular feature is the inverse pro-
portionality between the monetary part of the cost and the measure of
a jurisdiction, its “population”. By using a technique borrowed from
general-equilibrium theory, we prove the existence result.
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Functional affine-isoperimetry and an inverse logarithmic
Sobolev inequality

Carsten Schütt

Universität Kiel

We give a functional version of the affine isoperimetric inequality for
log-concave functions which may be interpreted as an inverse form of a
logarithmic Sobolev inequality inequality for entropy. A linearization of
this inequality gives an inverse inequality to the Poincaré inequality for
the Gaussian measure.

Distance graphs in the plane

Lev Shabanov

Higher School of Economics, Faculty of Mathematics

By a (unit) distance graph in the Euclidean plane R2 we mean a
graph G = (V,E) with V ⊂ R2 and E = {{x,y} : |x − y| = 1}. The
classical problem by Nelson and Hadwiger is in finding the maximum
chromatic number χ(G) of a distance graph G, and it is only known that
this maximum is between 4 and 7. For the lower bound, the inequality
χ(G) ≥ |V (G)|

α(G) is used, where α(G) is the independence number of G.
In our talk, we discuss new general relations between the independence
number, the number of vertices and the number of edges of a distance
graph in the plane. In particular, we show that given the number of
vertices and the independence number, the number of edges is much
larger than the Turán bound. For example, if there exist graphs Gn
with 4n vertices and α(Gn) ≤ n, then the number of edges is at least
26
3 n instead of Turán’s 6n.
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Local formulas for the Chern classes of triangulated
S1-bundles.

Georgy Sharygin

Moscow State University

(joint work with Nikolay Mnëv)

Let π : L → K be a map of simplicial complexes, whose geometric
realization is homeomorphic to a locally trivial fiber bundle. There is a
long-standing problem to express the characteristic classes of this bundle
in terms of the combinatorics of this map. In my talk I will describe
the solution of this problem in the simplest case (when the fiber is equal
to the circle S1) and give few insights into the possible solutions of the
general case.

A classification of link maps of graphs to R3 and
polyhedra to Rm

Arkadiy Skopenkov

Moscow Institute of Physics and Technology and Independent
University of Moscow

Let P and Q be polyhedra, i.e. bodies of simplicial complexes. A
link map is a map f : P tQ → Rm such that f(P ) ∩ f(Q) = ∅. A link
homotopy is a homotopy through link maps.

For connected graphs P and Q, linking coefficients define a 1–1
correspondence between the set of link homotopy classes of link maps
f : P tQ→ Rm and Z(χ(P )+1)(χ(Q)+1), where χ is the Euler character-
istic.
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Although this result is simple (and, for this reason, may be folk-
lore), the proof involves 3-dimensional visualization of the celebrated
4-dimensional Casson’s finger moves.

Main Theorem (a particular case). [1] If P and Q are closed
orientable 2- and 3-manifolds then linking coefficients define a 2–1 map
between the set of link homotopy classes of link maps f : P t Q → R5

and H1(P )⊕H2(Q), where H∗ is the homology group with Z-coefficients.
The proof involves higher-dimensional generalizations of the Whit-

ney trick and Casson’s finger moves.
I shall discuss recent generalizations joint with S. Avvakumov, I. Ma-

billard, U. Wagner, and possibly others. These generalizations concern
maps S3tS3tS3 → R5 without triple intersections and Tverberg maps
(or almost embeddings) of 2-dimensional simplicial complexes to R4.

[1] A. Skopenkov. On the generalized Massey–Rolfsen invariant for
link maps, Fund. Math. 165 (2000), 1–15.

Quasiconvex hull of three points on the plane

Alexey Stepanov

V. Vernadsky Crimea Federal University

(joint work with Popova Elena)

It is known quite a lot of problems which solution is connected with
the construction of the convex hull of a set of points on the plane. There-
fore a task of finding optimal algorithms depending on problem speci-
fication is natural and urgent. However, in all certain papers on this
topic all objects connected with convex hulls are considered as points,
i.e. their size is neglected. And we plan to take into account the size of
the objects.
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We call the figure on Fig. 1 quasiconvex hull of the points A1, A2, A3

with radii r1, r2, r3 (see Fig. 1). We suggest analogues of Jarvis’ and
Graham’s algorithms for constructing a quasiconvex hull of three points
with given radii. Also we prove a solvability of analogs for Fermat-
Torricelli-Steiner problem (see Fig. 2) and for minimal covering ball
problem (see Fig. 3) for several quasiconvex hulls.

Financial support. The research of the first author was partially
supported by the grant of the President of the Russian Federation, the
code is MK-2915.2015.1 (the author took part in this research as a co-
executor).
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Some analogs of fair division problem

Fedor Stonyakin

V. Vernadsky Crimea Federal University

This talk is devoted to some analogs of the well-known fair division
problem. The usual method to such problems is to consider subjects
that use additive non-atomic and probabilistic measures for estimating
the parts of divisible objects. Such studies are usually based on the
A. A. Lyapunov Convexity Theorem in finite-dimensional spaces. We
consider two types of problems.

Firstly, let’s suppose that there are small enough sets with zero es-
timation. However, a union of such negligible sets may have nonzero
estimation. In this case estimation function is not additive and non-
atomic. To simulate this effect we propose two non-additive analogs
of measure, namely quasi-measure and ε-quasi-measure. Corresponding
analogs of the fair division problem are considered.
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Secondly, we consider analog of the fair division problem for infinite
number of measures. Namely, we have an object and σ-algebra of its
subsets. Suppose there is a countable number of different criteria for es-
timating the divisible parts of the original object, but the object itself is
identical in terms of these criteria. The question about ”smoothing” of
estimates for some set from the point of view of infinite criteria is consid-
ered. To consider this problem we use the special system of anticompact
sets in Banach spaces introduced by us.

On the MacPhersonian

Ricardo Strausz

Universidad Nacional Autonoma de Mexico

In 2003 Daniel Biss published, in the Annals of Mathematics [1],
what he thought was a solution of a long standing problem culminating
a discovery by Gelfand and MacPherson [3]. Six years later he was
encouraged to publish an “erratum” of his proof [2], observed by Nikolai
Mnëv; up to now, the homotopy type of the so-called MacPhersonian
had remained a mistery. . .

The aim of this lecture is to convince the attendee of the fact that,
using a completely different approach to those used before, we can prove
that the (acyclic) MacPhersonian has the homotopy type of the (affine)
Grassmannian.

[1] Daniel K. Biss. The homotopy type of the matroid Grassmannian.
Annals of Mathematics (2) 158, No. 3 (2003), 929–952.

[2] Daniel K. Biss. Erratum to “The homotopy type of the matroid
Grassmannian”. Annals of Mathematics 170 (2009), 493–493.

[3] I. M. Gelfand, Robert D. MacPherson. A combinatorial formula
for the Pontrjagin classes. Bull. Am. Math. Soc. New Ser. 26, No.
2 (1992), 304–309.
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Arrangements of homothets of a convex body

Konrad Swanepoel

London School of Economics and Political Science

(joint work with Márton Naszódi, János Pach)

In 1994 Füredi and Loeb [1] asked the following question:

Is it true that for any centrally symmetric body K of dimen-
sion d, d ≥ d0, the number of pairwise intersecting homoth-
etic copies of K which do not contain each other’s centers is
at most 2d?

A construction of Talata [2] implies that the answer to this question is
no. We find an upper bound that is asymptotically close to best possible.
We also discuss the non-symmetric case and some related questions.

[1] Zoltán Füredi and Peter A. Loeb, On the best constant for the
Besicovitch covering theorem, Proc. Amer. Math. Soc. 121 (1994),
1063–1073.

[2] István Talata, On Hadwiger numbers of direct products of con-
vex bodies, Combinatorial and computational geometry, 517–528,
Math. Sci. Res. Inst. Publ., 52, Cambridge Univ. Press, Cam-
bridge, 2005.
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On computational complexity of length embeddability of
graphs

Mikhail Tikhomirov

Moscow Institute of Physics and Technology, Faculty of Innovations
and High Technology

A graph G is embeddable in Rd if vertices of G can be assigned with
points of Rd in such a way that all pairs of adjacent vertices are at the
distance 1. We show that verifying embeddability of a given graph in Rd
is NP-hard in the case d > 2 for all reasonable notions of embeddability.
The same result was published in [1]. However, it relied essentially on
an erroneous claim of Lovász (see [2], [3]), and we present a completely
different construction.

[1] B. Horvat, J. Kratochvil, T. Pisanski. On the computational com-
plexity of degenerate unit distance representations of graphs. Com-
binatorial algorithms (2011), 274–285.

[2] L. Lovász. Self-dual polytopes and the chromatic number of dis-
tance graphs on the sphere. Acta Scientiarum Mathematicarum
45:1–4 (1983), 317–323.

[3] A. Raigorodskii. On the chromatic numbers of spheres in Rn. Com-
binatorica 32:1 (2012), 111–123.
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Maps that take lines to plane curves

Vladlen Timorin

National Research University Higher School of Economics

(joint work with Vsevolod Petruschenko)

A planarization is a mapping f of an open subset U of the real
projective plane into the real projective n-space, such that f(L ∩ U) is
a subset of a hyperplane, for every line L. Studying planarizations is
closely related to studying maps taking lines to curves of certain linear
systems; a classical result of this type is the Möbius–von Staudt theorem
[1, 4] about maps taking lines to lines, sometimes called the Fundamental
Theorem of Projective Geometry. We assume that the planarizations are
sufficiently smooth, i.e., sufficiently many times differentiable. We give
[2, 3] a complete description of all planarizations in case n = 3 up to
the following equivalence relation: two planarizations are equivalent if
they coincide on a nonempty open set, after a projective transformation
of the source space and a projective transformation of the target space.
Apart from trivial cases, there are 16 equivalence classes, among which
6 classes of cubic rational maps (all remaining nontrivial classes are
represented by quadratic rational maps).

The figures below illustrate the surfaces obtained as the images of the
plane under the following 6 non-equivalent cubic rational planarizations:

(C1): [x : y : z] 7→ [z(x2 + y2) : y(x2 + z2) : x(y2 + z2) : xyz]

(C2): [x : y : z] 7→ [z(x2 − y2) : y(x2 + z2) : x(y2 − z2) : xyz]

(C3): [x : y : z] 7→ [x2z : z(x2 + y2) : x(x2 + y2 − z2) : y(x2 + y2 + z2)]

(C4): [x : y : z] 7→ [x2y : x(x2 − y2) : z(x2 + y2) : yz2]

(C5): [x : y : z] 7→ [x2(x+ y) : y2(x+ y) : z2(x− y) : xyz]

(C6): [x : y : z] 7→ [x3 : xy2 : 2xyz − y3 : z(xz − y2)].

49



Figure 1: The surfaces parameterized by (C1) (left) and by (C2) (right).

Figure 2: The surfaces parameterized by (C3) (left) and by (C4) (right).

[1] A. F. Möbius, Der barycentrische Calcul, 1827, In: August Ferdi-
nand Möbius, gesammelte Werke, vol. 1, S. Hirzel (Ed.), Leipzig,
1885

[2] V. Petruschenko, V. Timorin. On maps taking lines to plane
curves. arXiv:1409.3403

[3] V. Timorin. Planarizations and maps taking lines to linear webs
of conics. Math. Research Letters 19 (2012), No. 4, 899–907.

[4] K. G. Ch. von Staudt, Geometrie der Lage, Nürnberg, 1847
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Figure 3: The surface parameterized by (C5) (left) and by (C6) (right).

Saturated 1-planar graphs

Géza Tóth

Alfréd Rényi Institute of Mathematics, Budapest

(joint work with János Barát)

A graph is called 1-planar, if it can be drawn in the plane such
that each edge is crossed at most once. It is known that the maximum
number of edges of a 1-planar graph is 4n − 8. Brandenburg et al.
observed a very interesting phenomenon. They noticed that maximal
1-planar graphs (no edge can be added so that it remains 1-planar) can
have much fewer edges.

I review the estimates of Brandenburg et al. for the minimum num-
ber of edges of a maximal 1-planar graph and give an improvement of
the lower bound.

[1] F. J. Brandenburg, D. Eppstein, A. Gleissner, M. T. Goodrich,
K. Hanauer, J. Reislhuber: On the Density of Maximal 1-Planar
Graphs, Graph Drawing 2012, Lecture Notes in Computer Science
7704 (2013), 327-338.
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[2] P. Eades, S.-H. Hong, N. Katoh, G. Liotta, P. Schweitzer, Y.
Suzuki: Testing Maximal 1-Planarity of Graphs with a Rotation
System in Linear Time, Graph Drawing 2012, Lecture Notes in
Computer Science 7704 (2013), 339-345.

On tilings of the plane by polygons

Nikolay Vereshchagin

Moscow State University, Yandex, and Higher School of Economics

Are there polygons P that can be partitioned into two polygons so
that both are similar to P? Here are three such examples:

• A “golden parallelogram” (any parallelogram whose width is
√

2
times bigger than its length); its median cuts it into two equal
such parallelograms.

• Any right triangle; its altitude cuts it into two triangles that are
similar to the original one.

• The Ammann’s “Golden Bee” — a non-convex hexagon with right
angles.

Figure 4: Substitutions.
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Scherer [5] conjectured and Schmerl [4] proved that there are no
other polygons with this property.

Each of these examples can be considered as a substitution: the
original polygon is replaced by two its parts. We can then apply the
same substitution to all large parts of the resulting tiling of the original
polygon, then again and again. Tilings of the original polygons obtained
in this way are called “supertiles”.

Definition 1. A supertile is a tiling obtained from a single original tile
by several substitutions from Fig. 4. Examples of supertiles are shown
on Fig. 5.

Figure 5: Supertiles for each of the three substitutions

Tilings of the plane that are “like” supertiles are called “self-similar”.

Definition 2. ([6]) A pattern is a finite tiling. A pattern is legal if it
is a subset of a supertile. A tiling T is called self-similar if all its finite
subsets are legal.

Consider the following families of tilings of the plane:

• Red tilings: self-similar tilings by large and small golden rectan-
gles.

• Green tilings: self-similar tilings by large and small golden right
triangles.

• Blue tilings aka Ammann A2 tilings: self-similar tilings by large
and small Golden Bees.
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Theorem 7. (a) There is a unique red tiling and that tiling is periodic.
(b) There are continuum green tilings and all they are non-periodic [6].
(c) There are continuum blue tilings and all they are non-periodic [1].

Definition 3. A family of tilings is called SFT if it can be defined by
a finite number of local rules.

Theorem 8. (a) The family of red tilings is SFT. (b) The family of
green tilings is not SFT [7]. (c) The family of blue tilings is SFT [2].

[1] R. Ammann, B. Grünbaum and G.C. Shephard. Aperiodic tiles.
Discrete and Computational Geometry, v. 8 (1992). p. 1–25.

[2] Bruno Durand, Alexander Shen, Nikolay Vereshchagin. Ammann
tilings: a classification and an application. arXiv:1112.2896 (2012)

[3] Branko Grunbaum, Geoffrey C. Shephard, Tilings and Patterns.
Freeman, New York 1987.

[4] J. Schmerl. Dividing a polygon into two similar polygons. Discrete
Math. v. 311 (2011), no. 4, p. 220–231.

[5] K. Scherer. A puzzling journey to the reptiles and related animals.
Privately published, 1987.

[6] Boris Solomyak, Nonperiodicity implies unique composition for
self-similar translationally finite tilings, Discrete and Computa-
tional Geometry 20 (1998) 265-279

[7] Nikolay Vereshchagin. Aperiodic Tilings by Right Triangles. In:
Descriptional Complexity of Formal Systems - 16th International
Workshop, DCFS 2014, Turku, Finland, August 5-8, 2014. Pro-
ceedings. Lecture notes in computer sciences, Vol. 8614. Berlin :
Springer Verlag, 2014. P. 29-41.
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Borsuk–Ulam type G-spaces

Alexey Volovikov

Moscow State Institute of Radio-Engineering, Electronics and
Automation (Technical University)

(joint work with Oleg Musin)

We consider, for a finite group G, G-spaces that satisfy certain ana-
logues of the Borsuk–Ulam theorem (BUT-spaces). In the case when G
is an involution, there are several equivalent definitions for BUT-spaces
that can be considered as properties. We are also going to discuss some
combinatorial G-analogs of Tucker’s lemma and other lemmas about
G-spaces.

Self-affine convex bodies and bounded semigroups of affine
operators

Andrey Voynov

Moscow State University

A convex body K ⊂ Rn is called self-affine if there is a set of nonde-
generate affine operators {A1, . . . , Am} such that:

• K =
⋃m
i=1AiK, i.e. operators divide K;

• intAiK ∩ intAjK = ∅, i.e. elements of partition may intersect
each other by boundaries only.
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Self-affine bodies appear in the theory of functional equations as
domains of self-similar functions. The basic example of a self-affine
body is a simplex divided by some triangulation into a certain number
of simplices. Another example is a cylinder divided into two parts by
contractions along its axis towards its bases.

We present a classification of self-affine bodies. It appears that, in
some sense, all of them may be represented as a direct product of a
certain self-affine polytope and an arbitrary convex body. We describe
the relation between the geometry of a self-affine body K and the mul-
tiplicative semigroup generated by operators {A1, . . . , Am} that divides
it.

[1] Andrey Voynov. On the structure of self-affine convex bodies. Mat.
Sb., 2013, 204:8, 41–50.

[2] Vladimir Protasov, Andrey Voynov. Noncontractive compact
semigroups of affine operators. Mat. Sb., 2015, 206:7, 33–54.

[3] Vladimir Protasov, Andrey Voynov. Matrix semigroups with con-
stant spectral radius. arXiv:1407.6568.

Symmetric multiple chessboard complexes and some
theorems of Tverberg type

Sinǐsa Vrećica

University of Belgrade

(joint work with Duško Jojić and Rade Živaljević)

Generalizing the notion of chessboard complexes, we introduce the
multiple chessboard complexes and the symmetric multiple chessboard
complexes. We examine their topological properties and in some cases
determine their connectivity and establish their shellability.
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Using these results, we were able to establish some new Tverberg
type, and colored Tverberg type theorems. One of them confirms a
conjecture of Blagojević, Frick and Ziegler from [1] about the existence
of “balanced Tverberg partitions”.

The relevant publications on this topic are listed below.

[1] Pavle Blagojević, Florian Frick, Günter Ziegler. Tverberg plus con-
straints. Bull. London Math. Soc. 46 (2014), 953–967.

[2] Duško Jojić, Sinǐsa Vrećica, Rade Živaljević. Multiple chessboard
complexes and the colored Tverberg problem. arXiv:1412.0386

[3] Duško Jojić, Sinǐsa Vrećica, Rade Živaljević. Symmetric multi-
ple chessboard complexes and a new theorem of Tverberg type.
arXiv:1502.05290

Discrete Morse theory for the moduli space of a flexible
polygon, or Solitaire game on the circle

Alena Zhukova

Saint Petersburg State University

(joint work with Gaiane Panina)

A polygonal n-linkage is a sequence of positive numbers L = (l1, . . . , ln).
It should be interpreted as a collection of rigid bars of lengths li lying
on a plane and joined consecutively in a cycle by revolving joints.

A subset I of [n] = {1, 2, ..., n} is short if

∑
I

li <
1

2

n∑
1

li.
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A subset I of [n] = {1, 2, ..., n} is medium if

∑
I

li =
1

2

n∑
1

li.

A partition of [n] = {1, 2, ..., n} into some subsets is called admissible if
all the parts are short or there are exactly two medium sets.

The moduli space M(L) of a linkage L is the set of all planar con-
figurations of L modulo orientation-preserving isometries of R2. It is a
well-studied mathematical object. M. Farber and D. Schütz [1] proved
the following formula for its Betti numbers:

βk = ak + an−3−k + bk,

where ak is the number of short (k + 1)-subsets of [n] containing the
longest bar, and βk is the number of medium (k + 1)-subsets of [n]
containing the longest bar.

We consider only generic linkages, i. e. the linkages with no medium
subsets. We have a structure of a regular CW-complex K(L) on the
moduli space M(L) [3]. The k-dimensional cells of this complex are
labeled by cyclically ordered admissible partitions of the set [n] into
(n− k) non-empty subsets, and a closed cell C belongs to the boundary
of some other closed cell C ′ if and only if the partition λ(C) is finer than
λ(C ′) (see Fig. 1 for an example).

The number of cells exceeds the sum of Betti numbers. We use Robin
Forman’s discrete Morse theory [2] to reduce the number of cells. It is a
very powerful technique (at least as powerful as the smooth Morse theory
is): it allows to compute homology, cup-product, Novikov’s homology,
develop Witten’s deformation of the Laplacian, etc. In this talk we
demonstrate how it works: We build a perfect discrete Morse function
on K(L). Should be mentioned that not all the manifolds possess a
perfect Morse function. Even if it is the case, it is difficult to find it. In
particular, in the discrete setting it is an NP-hard problem.

The discrete perfect Morse function is constructed in two steps. On
the first step, we introduce some natural pairing on the cell complex
which substantially reduces the number of critical cells. However, this
number is not yet minimal possible. The rules of manipulating with the
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Figure 6: The cell C belongs to the boundary of the cell C ′

cells, and the rules describing gradient paths resemble the solitaire game.
On the second step we (following once again R. Forman) apply path re-
versing technique, which gives a perfect Morse function. This technique
is the discrete version of Milnor’s “First Cancellation Theorem” [3].

Type IIType I
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Figure 7: Cells of two types corresponding to the subset 2,6,9

We divide the cells that survived the contracting into two types and
give the bijection between the short subsets of [n] containing n and the
pairs of the cells (one cell of each type for every subset). For example,
if n = 9 and L = (1, 1, 1, 1, 1, 1, 1, 1, 1), then the subset {2, 6, 9} corre-
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sponds to the cells given on Fig. 2 of dimension 2 (type I) and 4 (type
II).

[1] M. Farber, D. Schütz. Homology of planar polygon spaces. Geom.
Dedicata 125 (2007), 75–92.

[2] R. Forman. A user’s guide to discrete Morse theory. Sem. Lothar.
Combin. 48B:48c (2002).

[3] G. Panina. Moduli space of a planar polygonal linkage: a combi-
natorial description. (2012) arXiv:1209.3241.

[4] G. Panina, A. Zhukova. Discrete Morse theory for moduli spaces
of flexible polygons, or solitaire game on the circle. (2015)
arXiv:1504.05139.

Equivariant Methods in Discrete Geometry: Problems and
Progress

Günter Ziegler

Freie Universität Berlin

(joint work with Pavle Blagojević, Florian Frick, Albert Haase, and
Benjamin Matschke)

In this lecture, I will discuss three different problems from Discrete
Geometry,

• the Topological Tverberg Problem,

• the Colored Tverberg Problem, and

• the Grünbaum Hyperplane Problem.

These problems have many things in common:
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• they are easy to state, and may look harmless,

• they have very nice and classical configuration spaces,

• they may be attacked by “Equivariant Obstruction Theory”,

• this solves the problems — but only partially,

• which leads us to ask more questions, look for new tools. . .

• and this yields surprising new results.

The hyperplane measure equipartition problem revisited

Rade Živaljević

Mathematical Institute SASA, Belgrade

We give an overview and the history of the last 20 years of the hyper-
plane measure equipartition problem, including some critical comments
on the review paper:

[1] Pavle V. M. Blagojević, Florian Frick, Albert Haase, Günter M.
Ziegler. Topology of the Grünbaum-Hadwiger-Ramos hyperplane
mass partition problem. arXiv:1502.02975 [math.AT] (2015).

61

http://arxiv.org/abs/1502.02975


62




	Karim Adiprasito
	Iskander Aliev
	Gergely Ambrus
	Alexei Berdnikov
	Pavle Blagojevic
	Hauke Dirksen
	Moritz Firsching
	Erik Friese
	Alexander Gaifullin
	Alexey Glazyrin
	Dmitry Gorbachev
	Albert Haase
	Andreas Holmsen
	Alfredo Hubard
	Thomas Jahn
	Martina Juhnke-Kubitzke
	Lukas Katthän
	Andrey Kupavskii
	Undine Leopold
	Alexander Magazinov
	Alexander Maksimenko
	Horst Martini
	Benjamin Matschke
	Luis Montejano 
	Márton Naszódi
	Ilia Nekrasov
	János Pach
	Gaiane Panina
	Zuzana Patáková
	Vladimir Protasov
	Philipp Pushnyakov
	Edgardo Roldán Pensado
	Alexei Savvateev
	Carsten Schütt
	Lev Shabanov
	Georgy Sharygin
	Arkadiy Skopenkov
	Alexey Stepanov
	Fedor Stonyakin
	Ricardo Strausz
	Konrad Swanepoel
	Mikhail Tikhomirov
	Vladlen Timorin
	Géza Tóth
	Nikolay Vereshchagin
	Alexey Volovikov
	Andrey Voynov
	Siniša Vrecica
	Alena Zhukova
	Günter Ziegler
	Rade Živaljevic

