Об аналоге теоремы Каратеодори для M-сильно выпуклых множеств

Карасёв Р.Н., Московский Физико-технический институт

e-mail: r_n_karasev@mail.ru

В данной работе приводится доказательство аналога теоремы Каратеодори для таких M-сильно выпуклых множеств, что множество M — порождающее.

1. Введение

В данной работе приводится доказательство аналога теоремы Каратеодори о выпуклой оболочке. Чтобы его сформулировать введем сначала некоторые определения и обозначения.

Напомним, что сумма Минковского $A + B$ и разность Минковского A / B двух множеств A и B из векторного пространства определяются равенствами (см. [1])

$A + B = \{ a + b : a \in A, b \in B \} = \bigcup_{b \in B} a + b, \quad A / B = \{ c : c + B \subseteq A \} = \bigcap_{b \in B} -b + A.$

Эти операции взаимно подобратны, то есть $(A/B) + B \subseteq A, \quad A \subseteq (A + B)/B.$

Будем считать, что все множества лежат в \mathbb{R}^n. Через $[X]$, $cl X$, $bd X$ и $int X$ будем обозначать: конечность элементов в конечном множестве X, или ∞, если множество X бесконечно; замыкание, границу и внутренность множества $X \subseteq \mathbb{R}^n$. Для линейной функции $\lambda(x)$ положим $H^\lambda = \{ x \in \mathbb{R}^n : \lambda(x) \leq t \}.$

Определение 1. Пусть $M \subseteq \mathbb{R}^n$ — выпуклое множество. Выпуклое множество $X \subseteq \mathbb{R}^n$ называется M-сильно выпуклым, если $X = M/(T)$ для некоторого $T \subseteq \mathbb{R}^n, T \neq \emptyset.$ То есть X — это пересечение некоторого семейства трансляций M. Частный случай этого определения есть понятие R-сильно выпуклости, когда M — это эвклидова шар радиуса R.

Это усечение понятия выпуклости приведено в [2, c. 118 — 119], где даны ссылки на некоторые работы, где это понятие исследовалось. В большей части этих работ рассматривался двумерный случай (см. также [3]). Такое понятие выпуклости естественно приводит к определению выпуклой оболочки.

Определение 2. Если множество $S \subseteq \mathbb{R}^n$ такое, что $M/S \neq \emptyset$, то множество $\operatorname{conv}_M S = M/(M/S)$ называется M-выпуклой оболочкой S. Иначе говоря, $\operatorname{conv}_M S$ — это пересечение всех трансляций M, содержащих S. Заметим также, что $\operatorname{conv}_M S$ — это наименьшее по включению M-сильно выпуклое множество, содержащее S. Через S и $\operatorname{conv} S$ обозначаем обычную коническую и выпуклую оболочку S.

Если M — эвклидова шар, то выполняется следующее свойство, которое играет важную роль в статье в дальнейшем (см., например, [3], [4]).

Определение 3. Выпуклое множество $M \subseteq \mathbb{R}^n$ называется порождающим, если для любого M-сильно выпуклого множества X найдется такое выпуклое $X^* \subseteq \mathbb{R}^n$, что $X = \{ x : x^* = M \}.$

В работе доказывается теорема Каратеодори для M-сильно выпуклых множеств, если M — порождающее. Для случая строго выпуклого M это утверждение было доказано в диссертации Балашова. Для не строго выпуклого M аналог теоремы Каратеодори М.В. Бадацовым доказан с заменой константы $n + 1$ на большую. Основной результат данной работы — следующий аналог теоремы Каратеодори.

Теорема 1. Пусть M — порождающее и $S \subseteq \mathbb{R}^n$ такое, что $M/S \neq \emptyset$, тогда

$$\operatorname{conv}_M S = cl \bigcup_{U \subseteq S, |U| \leq n+1} \operatorname{conv}_M U.$$
если заметить, что множество наборов из не более \(n + 1 \) элементов \(S \) компактно.

Аналог теоремы Каратеодори будет выведен из следующего утверждения:

Теорема 2. Пусть \(M \) — порожденное и \(M/S \subseteq M \) для некоторого конечного множества \(S \subseteq \mathbb{R}^n \). Тогда существует такое \(U \subseteq S \), что \(M/U \subseteq M \) и \(|U| \leq n + 1 \).

2. Доказательство теорем 1 и 2

В этом разделе теоремы 1 и 2 доказываются по модулю некоторых технических лемм, которые будут доказаны позже. Сначала выведем теорему 1 из теоремы 2.

Доказательство теоремы 1. Ясно, что теорему 1 достаточно доказать для конечных \(S \). Имеем

\[
\text{conv}_M S = \bigcup_{U \subseteq S, |U| \leq n + 1} \text{conv}_M U
\]

для всех \(S \subseteq \mathbb{R}^n \). Предположим противное, что существует такая \(x \) (можно считать \(x = 0 \)), что

\[
x \in \text{conv}_M S \quad \text{и} \quad x \notin \bigcup_{U \subseteq S, |U| \leq n + 1} \text{conv}_M U.
\]

Так как \(0 \in \text{conv}_M S = M/(M/S) \), то для всех \(y \in M/S \), имеем \(M - y \ni 0 \) или \(y \in M \), то есть \(M/S \subseteq M \).

Тогда, по теореме 2, существует такое множество \(U \subseteq S \), что \(|U| \leq n + 1 \) и \(M/U \subseteq M \). Приводя рассуждения в обратном порядке, получаем, что \(0 \in \text{conv}_M U \). Это противоречие доказывает теорему 1.

Лемма 1. Если семейство \(\mathcal{F} \) подмножеств топологического пространства \(X \) таково, что все \(Y \in \mathcal{F} \) гомологически тривиальны и любое компактное подмножество \(K \subseteq X \) принадлежит некоторому \(Y \in \mathcal{F} \), то \(X \) тоже гомологически тривиально.

Лемма 2. Если \(X = \bigcup_{i \in S} U_i \) топологическое пространство, где все \(U_i \) — открыты и гомологически тривиальны, \(U_i \subseteq U_j \) при \(i < j \), то \(X \) тоже гомологически тривиально.

Следующая лемма — основная при доказательстве теоремы 2.

Основная лемма. Пусть \(A \) и \(B \) — выпуклые множества в \(\mathbb{R}^n \). Тогда множество \(A \setminus \text{cl}(A + B) \) либо пусто, либо гомологически тривиально.

Доказательство этой леммы будет приведено позже, сейчас докажем теорему 2.

Доказательство теоремы 2. Положим \(\{X(s)\}_{s \in S} \), где \(X(s) = (M - s) \setminus M \). По условию теоремы, имеем

\[
\bigcap_{s \in S} X(s) = (M/S) \setminus M = \emptyset.
\]

Покажем, что для всех \(V \subseteq S \) множество

\[
\bigcap_{s \in V} X(s) = (M/V) \setminus M
\]

либо пусто, либо гомологически тривиально. Пусть \(A = M/V \). По условию теоремы, \(A \) — \(M \)-сильно выпукло, т. е. \(M = A + B \) для некоторого выпуклого \(B \). Так как \(M \) — замкнуто, то по основной лемме \(A \setminus M \) либо пусто, либо гомологически тривиально. Так как \(\bigcap_{s \in S} X(s) = \emptyset \), то из топологической теоремы Хелли (см. [2, с. 53]) получаем, что \(\bigcap_{s \in U} X(s) = \emptyset \) для некоторого \(U \subseteq S \) и \(|U| \leq n + 1 \). Тогда

\[
(M/U) \setminus M = \bigcap_{s \in U} X(s) = \emptyset, \quad \text{то есть} \quad M/U \subseteq M
\]

и все доказано.

3. Доказательство основной леммы

Из следующей последовательности лемм мы выведем основную лемму.

Лемма 3. Основную лемму достаточно доказать, если \(\text{int} A \neq \emptyset \).

Доказательство. Если \(\text{int} A = \emptyset \), то все будем рассматривать в \(L = \text{aff} A \) и можно также считать, что \(L \) — подпространство. Пусть \(C = \text{cl}(A + B) \) и \(C' = C \cap L \). Покажем, что существует такое \(B' \subseteq L \), что

...
$C' = \text{cl}(A + B')$. Для этого достаточно показать, что разность опорных функций $s(p, C')$ и $s(p, A)$ выпукла (см. [3]). Для всех $p \in L^+$ имеем

$$s(p, C') = \inf_{p^k \in L^+} s(p + p^k, C) \quad \text{и, значит,} \quad s(p, C') - s(p, A) = \inf_{p^k \in L^+} s(p + p^k, C) - s(p, A).$$

При этом $s(p, A) = s(p + p^k, A)$ (вдь $A \in L$), а значит, в правой части стоит выпуклая функция

$$f(p + p^k) = s(p + p^k, C) - s(p + p^k, A)$$

аргумента $p + p^k$ (так как $C = \text{cl}(A + B)$). Мы должны доказать, что функция

$$f'(p) = s(p, C') - s(p, A) = \inf_{p^k \in L^+} f(p + p^k)$$

выпукла. Пусть $p_1, p_2 \in L^+$ и $t \in [0, 1]$. Тогда для любого $\varepsilon > 0$ можно найти $p_1^k, p_2^k \in L^+$ так, что

$$f'(p_1) > f(p_1 + p_1^k) - \varepsilon \quad f'(p_2) > f(p_2 + p_2^k) - \varepsilon.$$

Функция f выпукла, следовательно, $f(t(p_1 + p_1^k) + (1 - t)(p_2 + p_2^k)) \leq t f'(p_1) + (1 - t)f'(p_2)$ и значит, $f'(p_1) + (1 - t)f'(p_2) \leq tf'(p_1) + (1 - t)f'(p_2) + \varepsilon$.

В силу того, что $\varepsilon > 0$ произвольно, имеем

$$f'(t(p_1 + (1 - t)p_2) \leq tf'(p_1) + (1 - t)f'(p_2), \quad \text{т. е. } f' \text{ выпукла и } C' = \text{cl}(A + B').$$

Так как $A \subseteq L$, $A + B' \subseteq L$, $\text{int} A \neq \emptyset$ в пространстве L и $A \setminus \text{cl}(A + B') = A \setminus \text{cl}(A + B)$, т. е. A выпукла и $\text{cl}(A + B')$ выпукла и $C' = \text{cl}(A + B')$.

Лемма 4. Для выпуклых множеств A и B множества $A \setminus \text{cl}(A + B)$ и $\text{int} A \setminus \text{cl}(A + B)$ гомотопически эквивалентны, если $\text{int} A \neq \emptyset$.

Доказательство. Пусть сначала $\text{int} A = \text{int} A

Пусть теперь существует $p \in \text{int} A \cap \text{int}(A + B)$ (можно полагать, что $p = 0$). Тогда очевидно, что для любого луча r, выходящего из p, $r \cap A \setminus \text{cl}(A + B) = \text{int} A

Отображение ϕ_r непрерывно, задано непрерывным отображением

$$\phi_r : A \setminus \text{cl}(A + B) \to (\text{int} A) \setminus \text{cl}(A + B) \quad \text{и} \quad \psi_r : (\text{int} A) \setminus \text{cl}(A + B) \to A \setminus \text{cl}(A + B),$$

которые дают гомотопическую эквивалентность между $A \setminus \text{cl}(A + B)$ и $(\text{int} A) \setminus \text{cl}(A + B)$. Действительно, отображение $\phi_r(z)(z)$ гомотопически эквивалентно тождественному посредством гомотопии $h(t, z) = (1 - t) \phi(z) + t h(z)$, и аналогично для $\psi_r(z)$. Лемма доказана.

Лемма 5. Утверждение основной леммы верно, если оно верно для ограниченных A и B.

Доказательство. По леммам 3 и 4 достаточно доказать гомотопическую тривиальность множества $(\text{int} A) \setminus \text{cl}(A + B)$, где $\text{int} A \neq \emptyset$. Сначала предположим, что множество $\text{cl}(A + B)$ не содержит ни одной прямой. Следовательно, существует такая линейная функция λ на \mathbb{R}^n, что множество $H^\lambda \cap \text{cl}(A + B)$ ограничены при любом t. Тогда множества $H^\lambda \cap A$ и $H^\lambda \cap B$ тоже ограничены при любом t.

После прибавления к функции λ некоторой константы можно считать, что $l(a) \geq 0$ для всех $a \in A$ и $l(b) \geq 0$ для всех $b \in B$.

Обозначим $A_n = H^\lambda_n \cap A$ и $B_n = B \cap H^\lambda_n$. Множество $(\text{int} A) \setminus \text{cl}(A + B)$ является объединением возрастающая по включению последовательности открытых множеств

$$(\text{int} A_n) \setminus \text{cl}(A + B) \quad n \in \mathbb{N},$$

Об анало...
последовательности гладких и строго выпуклых множеств \(\{ A_i \}_{i \geq 1} \) таких, что \(A_{i+1} \supseteq A_i \) для всех \(i \geq 1 \), \(A = \bigcup_{i \geq 1} A_i \). Тогда \(A \) — предел последовательности \(\{ A_i \}_{i \geq 1} \) в хаусдорфовой метрике для выпуклых компактов и существует такая последовательность \(\varepsilon_i > 0 \), \(i \in \mathbb{N} \), что \(\lim_{i \to \infty} \varepsilon_i = 0 \) и \(A \subseteq A_i + \varepsilon_i S_1 \), где \(S_1 \) — единичный шар радиуса 1. Пусть \(B_i = B + \varepsilon_i S_1 \). Тогда множества \(A_i, B_i \) — гладкие, строго выпуклые и

\[
A_i \subseteq A, \quad A_i + B_i = A_i + \varepsilon_i S_1 + B \supseteq A + B, \quad \text{причем}, \quad A = \bigcup_{i \geq 1} A_i \quad \text{и} \quad A + B = \bigcap_{i \geq 1} A_i + B_i.
\]

Следовательно,

\[
(\text{int } A) \setminus (A + B) = \bigcup_{i \in \mathbb{N}} (\text{int } A_i) \setminus (A_i + B_i).
\]
Каждое \((\text{int} A_i) \setminus (A_i + B_i)\) либо гомологически тривиально, либо пусто. Для любого компакта \(K \subseteq (\text{int} A) \setminus (A + B)\) найдется такое \(i\), что \(K \subseteq (\text{int} A_i) \setminus (A_i + B_i)\); достаточно взять \(i\) таким, что
\[
\varepsilon_i < \min\{\text{dist}(K, \mathbb{R}^n \setminus \text{int} A), \text{dist}(K, A + B)\}.
\]

По лемме 1 \((\text{int} A) \setminus (A + B)\) гомотопически тривиально, либо пусто и все доказано.

В дальнейшем выпуклые множества \(A\) и \(B\) считаем ограниченными, гладкими и строго выпуклыми. Заметим, что если множество \(0 \in B\), то \(A \setminus (A + B) = \emptyset\), и в этом случае основная лемма верна. Поэтому далее предполагаем, что \(O \notin B\) и, следовательно, \(O \cap A = \emptyset\) — гладкие острые выпуклые конусы.

Для любой прямой \(l\) и вектора \(x\) \(\|l\|\) и двух точек \(a_1, a_2 \in l\) будем говорить, что \(a_2\) больше (дальше) \(a_1\) относительно вектора \(x\), если \(a_2 = a_1 + \lambda x\), где \(\lambda > 0\). Понятие меньше (ближе) определяется аналогично.

Лемма 7. Для любого вектора \(0 \notin x \subseteq X\) и любой прямой \(l \| l\) пересечение \(l \cap (A \setminus (A + B))\) либо пусто, либо состоит из одного полупространства.

Доказательство. Ясно, что \(T_1 = l \cap A\) и \(T_2 = l \cap (A + B)\) — отрезки, как пересечения прямой и выпуклого множества. Так что нам нужно показать, что множество \(T_1 \cap T_2\) либо пусто, либо состоит из одного полупространства.

Докажем от противного. Утверждение этой леммы может быть неверным только в одном случае, когда отрезок \(T_2\) содержит внутри \(T_1\). Но \(x \in \text{соп} B\), значит, найдется \(b = \lambda x \in B\) \((\lambda > 0)\), значит множество \(A + B\) содержит отрезок \(T_1 + b\) на прямой \(l\), то есть \(T_1 \supseteq T_2 \supseteq T_1 + b\), что является противоречием.

Лемма 8. Пусть \(A, B\) — ограниченные, гладкие, строго выпуклые и \(O \notin B\). Тогда найдется такое непрерывное отображение \(f : A \to A\), что: 1) \(f(a) - a \in -\text{соп} B\) для любого \(a \in A\); 2) \(f(f(a)) = a\) для любого \(a \in A\); 3) \(f(A) \subseteq A\setminus (A + B)\).

Доказательство. Пусть \(A' = A + \text{соп} B\) и докажем более сильное утверждение, что существует отображение \(f : A' \to A\), такое, что: 1) \(f(a) - a \in -\text{соп} B\) для любого \(a \in A'\); 2) \(f(f(a)) = f(a)\) для любого \(a \in A'\); 3) \(f(A') \subseteq A\setminus (A + B)\).

Определим \(f\) сначала на \(bd A'\). Так как \(B\) — гладкое, то множество \(A'\) — гладкое. Обозначим через \(n_p^{C}\) внешнюю нормаль к гладкому выпуклому множеству \(C\) в точке \(p \in \text{bd} C\).

Если \(a \in \text{bd} A\), то \(n_p^{A\setminus(A + x)}\) и \(f(a) = a - x\), то есть \(f(a) - a \in -\text{соп} B\). Свойство 1 выполнено.

Докажем выполнение свойства 3, Образ \(\text{Im} f\) отображения \(f\) это те точки \(p \in \text{bd} A\), для которых \(n_p^{A\setminus(A + x)}\) — двойственный конус купец к \(\text{соп} B\). Пусть \(p \in \text{Im} f\), то \(O \notin B\). В самом деле, если \(n_p^{A}\) \(\subseteq \text{соп} B^*\), то \(B \subseteq \{x \in \mathbb{R}^n : (n_p^{A}, x) \leq 0\}\). Так как \(n_p^{A}\) — внешняя нормаль к \(A\) то \((n_p^{A}, a - p) \leq 0\) для всех \(a \in A\).

Значит, \((n_p^{A}, x - p) \leq 0\) для всех \(x = a + b \in A + B\), а это означает, что если \(p \in A + B\), то \(p = a + b\), где \(a \in A\), \(b \in B\) и \((n_p^{A}, a - p) = (n_p^{A}, b) = 0\). Тогда \(p = a\) и так как \(A\) строго выпукло, то \(p = a\) и \(b = O\).

Теперь рассмотрим \(f\) на все \(A'\). Пусть \(x' \in (-\text{соп} B)\). Для любой \(a \in A'\) положим
\[
g(a) = \text{соп} A'\quad (a - x = \lambda(a)x',\quad a \leq \lambda(a)\quad \text{и}\quad f'(a) = f(g(a))).
\]

Таким образом, что \(g(a)\) определено и непрерывно. Сделав то же, \(f'(a)\) — непрерывно и для него свойства 2 и 3 очевидно выполняются, а свойство 1 выполняется потому, что
\[
f'(a) - a = f(g(a)) - a = f(g(a)) - g(a) + g(a) - a = f(g(a)) - g(a) + \lambda(a)x' \in \text{соп} B + \text{соп} B = \text{соп} B.
\]

Тем самым лемма доказана.

Доказательство основной леммы. По лемме 6 достаточно рассматривать ограниченные, строго выпуклые и гладкие \(A\) и \(B\). Также можно считать, что \(O \notin B\).

Рассмотрим отображение \(f\) из леммы 8. Пусть \(i : f(A) \to A\), \(A\) — отображение вложение. Тогда \(i\circ f\) гомотопически топологическому отображению \(A\), так как отрезок \([a, f(a)] \subseteq A\) для любой точки \(a \in A\). Отображение \(f \circ i\) равно топологическому отображению \(f(A)\). Значит, \(f\) — гомотопическая эквивалентность \(A\) и \(f(A)\).

Поскольку \(f\) отображение \(i \circ f\) гомотопическому отображению \(f(A)\). В этом случае отображение \(f \circ i\) равно топологическому отображению \(f(A)\). Отображение \(i \circ f\) гомотопически
точественному отображению множества $A \setminus (A + B)$. В самом деле, пожалуй, что для любой точки $a \in A \setminus (A + B)$ отрезок $[a \ i(f(a))]$ лежит в $A \setminus (A + B)$. По теореме 7 этот отрезок параллелен некоторому $x \in \text{соп} B$, и по свойству 1 отображения f прямая, содержащая этот отрезок, пересекает $A \setminus (A + B)$ по некоторому подуинтервалу, это значит, что отрезок $[a \ i(f(a))]$ содержится в этом подуинтервале, так как его концы содержатся в нем. Таким образом доказано, что $A \setminus (A + B)$ гомотопически эквивалентно A. Доказательство завершено, так как выпуклое множество A очевидно, гомологически тривиально.

4. Заключение

Автор хочет поблагодарить М.В. Балашова за формулировку задачи, В.Л. Дольникова за всестороннюю поддержку и содержательные обсуждения и Г.Н. Яковлева за полезные советы при подготовке статьи.

Литература